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Introduction

Deep Learning and Artificial Intelligence workloads continue to demand higher 
performance and lower power consumption. This technical paper introduces 
the next generation AI accelerator from Intel: the Intel® Gaudi® 3 AI Accelerator. 
The new accelerator features the 5th generation of heterogenous AI acceleration 
architecture. The Intel® Gaudi® 3 AI Accelerator was designed to provide state-of-
the-art datacenter performance for all AI workloads, from generative applications 
such as large language models (LLMs) and diffusion models (image generation 
such as Stable Diffusion) to standard object recognition, classification, and 
voice dubbing.

The Intel® Gaudi® 2 AI Accelerator, introduced in 2022, is supported by the Intel® 
Gaudi® software suite, which integrates the PyTorch framework. With the Intel® 
Gaudi® 3 AI Accelerator we provide the next level of AI performance and power 
efficiency. Advancing from the Intel® Gaudi® 2 AI Accelerator 7nm process, the 
Intel® Gaudi® 3 AI Accelerator is manufactured in TSMC 5nm process, which 
provides improved area density and power efficiency.

Intel® Gaudi® 3 AI Accelerator continues to push the boundaries of what is 
possible in performance and power efficiency. Built on the Intel® Gaudi® 2 AI 
Accelerator architecture, Intel® Gaudi® 3 AI Accelerator provides significant 
boosts in compute, memory bandwidth, and architectural efficiency.

The Intel® Gaudi® 3 AI Accelerator features two compute dies, which together 
contain 8 MME engines, 64 TPC engines and 24x 200 Gbps RDMA NIC ports. 
In addition, the total of 8 HBM2e chips comprise a 128 GB unified High Bandwidth 
Memory (HBM).

The Intel® Gaudi® 3 AI Accelerator excels at training and inference with 1.8 PFlops 
of FP8 and BF16 compute, 128 GB of HBM2e memory capacity, and 3.7 TB/s of 
HBM bandwidth.
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2x
FP8 GEMM FLOPs

4x
BF16 GEMM FLOPs

1.5x
Faster HBM Bandwidth

1.33x
Larger HBM Capacity

Gaudi® 3 AI Accelerator Overview

AI applications increasingly demand faster and more energy-efficient hardware 
solutions and the Intel® Gaudi® 3 AI Accelerator was designed to answer the 
demand. With more than 2x FP8 GEMM FLOPs and more than 4x BF16 GEMM 
FLOPs compared to the Intel® Gaudi® 2 AI Accelerator, Intel® Gaudi® 3 AI 
Accelerator continues to provide state-of-the-art AI training performance. With 
1.5x faster HBM bandwidth and 1.33x larger HBM capacity, the Intel® Gaudi® 3 
AI Accelerator provides an order-of-magnitude improvement in large language 
model inference performance compared to the Intel® Gaudi® 2 AI Accelerator.

The Intel® Gaudi® 3 AI Accelerator (Figure 1) features two identical compute dies, 
connected through a high-bandwidth, low-latency interconnect over an interposer 
bridge. The die-to-die connection is transparent to the software, providing 
performance and behavior equivalent to that of a large unified single die.

The Intel® Gaudi® 3 AI Accelerator compute architecture is heterogeneous and 
includes two main compute engines – a Matrix Multiplication Engine (MME) 
and a fully programmable Tensor Processor Core (TPC) cluster. The MME is 
responsible for doing all operations that can be lowered to Matrix Multiplication, 
like fully connected layers, convolutions and batched-GEMMs. The TPC,  
a Very Long Instruction Word (VLIW) Single-Instruction Multiple-Data (SIMD) 
processor tailor-made for deep learning applications, is used to accelerate all  
non-GEMM operations.

Intel® Gaudi® Accelerator Product Line

Intel® Gaudi® 2 to Intel® Gaudi® 3 AI Accelerator Feature Comparison.

Feature/Product Intel® Gaudi® 2 AI Accelerator Intel® Gaudi® 3 AI Accelerator

BF16 MME TFLOPS 432 1835

FP8 MME TFLOPS 865 1835

BF16 Vector TFLOPS 11 28,7

MME Units 2 8

TPC Units 24 64

HBM Capacity 96 GB 128 GB

HBM Bandwidth 2.46 TB/s 3.7 TB/s

On-die SRAM Capacity 48 MB 96 MB

On-die SRAM Bandwidth 6.4 TB/s 12.8 TB/s

Networking (bidirectional) 600 GB/s 1200 GB/s

Host Interface PCIe Gen4 X16 PCIe Gen5 X16

Host Interface Peak BW 64 GB/s (32 GB/s per direction) 128 GB/s (64 GB/s per direction)

Media Decoders 8 14

Table 1. Intel® Gaudi® 2 and Intel® Gaudi® 3 AI Accelerators.Fig 1. Intel® Gaudi® 3 OAM Module.
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HW System

HL-325L OCP Accelerator Module

The Intel® Gaudi®3 AI Accelerator OCP Accelerator Module (OAM) Card is 
offered to system designers in standard OCP OAM 2.0 Mezzanine card form  
and supports up to 900W Total Device Power (TDP) with passive cooling and  
up to 1.2KW TDP with liquid cooling.

Table 2 provides its key interfaces:

HLB-325L Universal Baseboard

The HLB-325 Universal Baseboard is another product inspired by Open Compute 
Project (OCP) and offered for simplifying system design with the Intel® Gaudi® 
3 AI Accelerator. The HLB-325 supports eight Intel® Gaudi® 3 AI Accelerator 
cards that are passively interconnected on its PCB in a non-blocking, all-to-all 
configuration, using 21 NICs from each card (3x 200 GbE ports to every other of 
the 7 cards), as well as routing the 3 remaining 200 GbE NICs from every Intel® 
Gaudi® 3 AI Accelerator card (3x8=24) to the six on-board OSFP800 connectors 
for scaling-out.

The baseboard has standard interface/connectors to the HIB (Host Interface 
Board), which allows the system designer customization to design to specific 
needs and the flexibility to build systems of choice with a different ratio of CPUs 
to accelerators for different varieties of topologies and applications.

HLB-325L Universal Baseboard

Table 2. HL-325L OCP Accelerator Module Key Interfaces

Interface Description

Host Link x16 PCIe Gen5

Networking:Card-to-Card & 
Scale-out 48 x 112 Gb/s PAM4 SerDes Links

JTAG In-field CPLD programming and low-level ASIC debug

UART Low level debug & BMC access

I2C Master On/Off-board Peripherals

I2C Slave / SMBUS BMC control and monitoring interface

HL-325L OCP Accelerator Module
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Fig 2. Key components of HLB-325.

• HLB-325 has the following main components:
• 8 X dual B2B connectors for the HL-325 Mezzanine boards
• High speed connectors for x16 PCIe interconnect to HIB
• 2 Complex Programmable Logic Devices
• Power and reset control
• JTAG distribution to the mezzanines

• LED indications
• 6x OSFP connectors (6x800G using 112G PAM 8 SerDes)
• 3x PHY retimers
• 8x PCIe retimers
• USB connectors for Debug

Block Diagram and Main Components

Fig 3. HLB-325 High Speed Block Diagram.

SCALE-UP SCALE-OUT
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HL-338 PCIe Add-In Card

Table 4. HL-338 PCIe Key Interfaces

Fig 4. HLTB-304 Block Diagram.

Interface Description

Host Link x16 PCIe Gen5

Networking:
• Card-to-Card
• Scale-out

• 48 x 112 Gb/s PAM4 SerDes Links
• 2 x 400G QSFP112 ports

JTAG In-field CPLD programming and low-level ASIC debug

I2C Slave / SMBUS BMC control and monitoring interface

Feature Description

OAM support

• OAM powered by 54V,12V and 3.3V
• Dual B2B connectors
• x16 PCIe Gen5 host interface per OAM
• 24x 200 GbE RoCE for scaleup and scale-out, via 48 112G PAM4 Serdes

Baseboard to HIB (Host 
Interface Board) Interface

• 8 X 16 PCIe Gen 5 connectors
• Power: 12V_Standby, 54V
• Side band signals: I2C, Reset, reference clocks, JTAG, UART, SGMII, USB
• Eight Amphenol connectors: 2x 160P (10131762-301LF) + 6 x 112P (10137002-101LF)

Networking: Card to Card & 
Scale-out

• Per OAM: 24x 200 GbE (48 112 Ghz PAM4 SerDes Links) split into:
• 21 x 200 GbE for OAM-to-OAM connections
• 3 x 200 GbE for scale-out
• Total Baseboard Scale-out:
• 8 x 3 x 200 GbE = 4.8 TbE connected to 6 OSFP800 ports

PCB dimension • 585 mm x 417 mm x 4.6 mm

HL-338 PCIe Add-In Card

The Intel® Gaudi® 3 AI Accelerator PCIe Add-In Card is offered to system 
designers in accordance with PCIe CEM Spec. Revision 5.1 form and supports 
up to 600W TDP Power with passive cooling.

Table 4 provides HL-338’s key interfaces:

HLTB-304 x4 Top Board

The HLTB-304 board allows connectivity of 4 HL-338 cards, 6x 200 GbE links 
from each. HL-338 card to each of the other 3 HL-338 cards, 18 links of 200 GbE 
total per card.

Table 3. HLB-325 Features
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Intel® Gaudi® 3 AI Accelerator Architecture

Parallel Execution of the Heterogenous Engines

Intel® Gaudi architecture was designed to allow activating all engines in parallel. 
This means that MME, TPC and NIC can all work at the same time.

The two main use-cases for running different engines in parallel are:
1.  No dependency between the input and output of type of engine. In this case 

no special software intervention is needed. The Graph Compiler can simply 
trigger each engine to execute, providing the full input and output tensor sizes.

2.  There is dependency between operations running on different engines:  
the output of one engine is used as the input of another engine.

The first case is simple and allows MME, TPC and NIC to be scheduled to run in 
parallel. When one engine has completed its executing operation, the engine can 
be scheduled to start working on the next operation (immediately upon readiness 
of its inputs).

The second case is more complex as it requires finer-grained scheduling, in 
addition to work size management that is done by the Intel® Gaudi software. 
In this case, the dependent engines are scheduled to execute in a pipelined 
manner with a producer-consumer relation. The engine scheduling and entire 
orchestration is done by the Graph Compiler. A more detailed explanation on 
how several software layers are combined to work together to achieve efficient 
engine scheduling and execution is presented in the following section.

Figure 5 shows the complete block diagram of the Intel® Gaudi® 3 AI Accelerator.

Fig 5. Intel® Gaudi® 3 AI Accelerator with L2 cache for every 2 MME and 16 TPC unit. Parts of L2 can be configured by the Graph Compiler to serve as shared L3.

16x TPCs 16x TPCs

16x TPCs 16x TPCs
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Each of the components in the chip are explained in detail in the next chapters.

Full implementation of Intel® Gaudi® 3 AI Accelerator includes the following units:

Compute Engines
• 8 Matrix Multiplication Engines (MMEs)
• 64 Tensor Processor Cores (TPCs)

Media Engines
• 14 Media Decoder Engines (DECs)
• 4 Rotator Engines (ROT)

Memory
• 96 MB of L2 Cache
• 128 GB of 8 HBM2e stacks

Networking
• PCIe Gen5 X16 port for communicating with host
• 24 Network ports and the accompanied RDMA Engine
• Scheduling and Synchronization Unit

Physical partioning
Intel® Gaudi® 3 AI Accelerator compute engines are split into four clusters. 
Each cluster is referred to as a DCORE (Deep Learning Core) and contains:
• 2 Matrix Multiplication Engines (MMEs)
• 16 Tensor Processor Cores (TPCs)
• 24 MB of L2 Cache

Figure 6 reviews Intel® Gaudi® 3 AI Accelerator architectural elements with  
DCORE partition, Media Sub-system, Network sub-system and the connection 
with Host.

MME TPC

DEC ROT

L2 HBM

PCIE NET SSU
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Fig 6. Intel® Gaudi® 3 architecture with DCORE point-of-view and supporting software layers.

PCIe Gen5 X16Intel® Gaudi® 3

2
4

 x
 2

0
0

G
 E

th
 P

o
rt

s
2

4
 x

 2
0

0
G

 E
th

 P
o

rt
s

Intel® Gaudi® 3 AI Accelerator Technical Paper 9– 3. Architecture



Host Interface

Intel® Gaudi® 3 PCIe Card

Intel® Gaudi® 3 AI Accelerator is equipped with a state-of-the-art PCI Express 
Gen 5 x16 lane interface, a significant upgrade from the Gen 4 PCIe found in the 
prior generation accelerator. This advanced interface offers an impressive total 
bandwidth of 128 GB/sec, with 64 GB/sec available in each direction. This is a 
substantial improvement over the 64 GB/sec total bandwidth (32 GB/sec in each 
direction) provided by the Gen 4 PCIe.

The PCIe Gen 5 interface allows Intel® Gaudi® 3 AI Accelerator to seamlessly 
connect with the most powerful CPUs, external NICs, and SSDs available on the 
market. This ensures optimal performance and efficiency, making it a leading 
choice for high-performance computing solutions.

Intel® Gaudi® 3 Control Path

To manage the parallel and efficient execution of various engines, the Intel® 
Gaudi® 3 AI Accelerator incorporates a programmable Control Path entity.  
This entity is designed for high throughput and low latency. Figure 7 provides  
the primary components of this functionality.

The Control Path of Gaudi® 3 comprises the following elements:

•  Submission Queues (SQs): 
These are issued by the runtime system.

•  Completion Queues (CQs): 
These are used for job completion reporting.

•  Programmable Scheduling Mechanism: 
This mechanism is utilized for task scheduling.

•  Programmable Hardware Synchronization Mechanism: 
This is referred to as ‘Sync Manager (SM)’ in the diagram and is used 
for hardware synchronization.

•   Programmable Interrupt Service Mechanism: 
This mechanism, referred to as ‘Interrupt Manager (INTR)’ in the diagram, 
enables the passing of asynchronous events to Habana Drivers.

Each of these components plays a crucial role in ensuring the smooth  
and efficient operation of Intel® Gaudi® 3 AI Accelerator engines.

For controlling parallel and efficient executions of the various engines,  
the Intel® Gaudi® 3 AI Accelerator includes a programmable low-latency,  
high throughput Control Path entity. Figure 7 illustrates the main building  
blocks of this functionality.

Fig 7. Control Path Block Diagram.

CQ
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Compute

Figure 8 showcases the range of Floating Point Data types that are supported 
by the Intel® Gaudi® 3 AI Accelerator engines, demonstrating its versatility and 
adaptability.

Table 5 provides a detailed breakdown of the peak operations per second for both 
matrix multiplication (performed by MME) and vector processing (performed by 
TPC). This information underscores the impressive computational power of the 
Intel® Gaudi® 3 AI Accelerator.

Intel® Gaudi® 3 MME

MME Intro
The Intel® Gaudi® 3 AI Accelerator Matrix Multiplication Engine (MME) represents 
the 5th Generation of the Intel® Gaudi® Accelerator family MME Engines. These 
MMEs are specialized, high-performance compute cores, specifically designed 
for matrix operations, a type of computation that is fundamental to deep learning 
algorithms. The Intel® Gaudi® 3 AI Accelerator houses eight such MMEs, each 
capable of performing an impressive 64K parallel operations. This massive 
parallelism allows for a high degree of computational efficiency, making these 
MMEs particularly adept at handling the complex matrix operations prevalent 
in deep learning workloads.

The MMEs in Intel® Gaudi® 3 AI Accelerator have been tailored for efficiency  
in multiplication operations performed on current deep learning models.  
They feature a rich programmer’s model that enables flexibility when distributing  
a job among the various MMEs and providing memory directives to maximize 
MACs utilization.

As deep learning models continue to increase in size and complexity, the demand 
for efficient, high-performance matrix multiplication engines is set to rise. The 
MMEs in solutions like Intel® Gaudi® 3 AI Accelerator are therefore of critical 
importance to the ongoing advancement of deep learning technologies.

FP8  1835  1835 

BF16  1835  1835 

FP16 (signed)  459  459 

TF32  459  459 

FP32  229  229 

FP8  57.3 57.3

BF16  28.7  28.7 

FP16  28.7  28.7 

FP32  14.3  14.3 

MME	(Matrix)

TPC	(Vector)

Computation	Type Datatype OAM	Peak	TFLOP/sec PCIe	Peak	TFLOP/sec

Intel® Gaudi® 3 AI Accelerator

Table 5. Intel® Gaudi® 3 OAM and PCIe matrix and vector compute capabilities.

Fig 8. Supported floating-point datatypes.

8B 23B

8B 10B

5B 10B

8B 7B

5B 2B

4B 3B

6B 10B
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MME Architecture
The Intel® Gaudi® 3 AI Accelerator is a powerhouse of computational capability, 
housing eight Matrix Multiplication Engines (MMEs). Each of these engines  
is equipped with 64K Multiply-Accumulate Units (MACs), which collectively 
enable a peak throughput of over 200 Teraflops per MME. This high  
throughput underscores the impressive performance potential of the Intel® 
Gaudi® 3 AI Accelerator.

Figure 9 offers a view of the functionality of a single engine. This visual 
representation can help users better understand the intricate workings of 
the MMEs and their role in the overall performance of the Intel® Gaudi® 3 AI 
Accelerator. With this knowledge, users can fully leverage the capabilities of the 
accelerator for their computational needs.

Figure 9A presents an algorithmic depiction of a General Matrix Multiplication 
(GEMM) operation, specifically an AxB multiplication. This operation generates 
tensor C[NxM] from two input tensors, A[NxK] and B[KxN]. Remember that in 
matrix multiplication, each computed element is the dot product of a row in A  
and a column in B, as demonstrated by the darker shades in the three tensors.

Figure 9B displays a block diagram detailing the data flows. The MME is 
programmed with the necessary dimensions, locations, data types, and various 
execution operands. It then retrieves tensors A and B from memory, pulling them 
into its streaming buffers for the matrix multiplication. The matrix multiplication 
can execute up to 64K Multiply and Accumulate operations in parallel. Upon 
completion, it will push tensor C back to memory. The memory system comprises 
a cache and the actual HBM memory. Each of these tensors can be independently 
pulled or pushed to the on-die SRAM, irrespective of the MME behavior.  
For more information, refer to the Memory section. The eight MME engines  
can be programmed together to perform a larger job. The following diagram 
represents 8 MMEs.

Fig 9. General matrix multiplication and its mapping to the MME engine block diagram.

C = A x B
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Fig 10. General matrix multiplication and its mapping to the MME engine block diagram.

C = A x B

Figure 10A represents 8 MMEs and illustrates an algorithmic process where an 
AxB matrix multiplication is divided among the eight MMEs. Each MME performs 
an NxM slice of the job, sharing a common dimension of K. The Intel® Gaudi® 3 
AI Accelerator memory subsystem, along with its runtime optimizations, ensures 
that, when possible, any reused data is fetched only once from the HBM.  
For instance, mme0, mme2, mme4, and mme6 all pull from the upper part  
of tensor A, while mme0 and mme1 share a quarter of tensor B. The HL GC 
Runtime ensures that when needed, fetched data is stored in cache.

It’s worth noting that other dimension splits are possible, and the Graph  
compiler analyzes the different options to choose the most efficient setting.

Figure 10B shows a block diagram detailing the data flows. The MMEs can operate 
in parallel, each fetching its required subset of A and B and producing its NxM 
subset within C. The eight MMEs in Intel® Gaudi® 3 AI Accelerator enable parallel 
performance of 0.5M operations, achieving up to 1.8 TB/s.
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1 Large MME
Consumes 512B of
input data per cycle

Each consumes 32B of
input data per cycle

Total consumed input data:
256x32B = 8192B

256 Small Cores

16B

16B 16 x 16
Core

16B

16B 16 x 16
Core

16B

16B 16 x 16
Core

16B

16B 16 x 16
Core

256 x 256
MME

256B

256B

Benefits of One Large Matrix Multiplication Unit Over Multiple Small Units
As mentioned above, Intel® Gaudi® 3 AI Accelerator features eight large MMEs 
with each MME performing 64k MACs per cycle. Comparing the MME to modern 
GPUs that were modified for AI workloads, the Intel® Gaudi® 3 AI Accelerator 
features a small number of large matrix multiplication units, while GPUs contain a 
large number of small matrix multiplication units. The following diagram compares 
the two options for GEMM accelerators: one large unit vs. multiple small units.

Figure 11 compares a single Intel® Gaudi® 3 AI Accelerator MME with 64k 
Multiply-Accumulates (MACs) per cycle to 256 small GEMM cores each with 
256 MACs/cycle, which amount to 64k MACs/cycle. This diagram assumes the 
MME and cores are organized as squared 2D matrices. The MME contains 256 
rows over 256 columns, and the small cores contain 16 rows over 16 columns 
each. The comparison assumes input datatype of FP8, which requires 1 byte per 
input element.

The compute capabilities of the two options in Figure 11 are equivalent – both 
can perform 64k MACs/cycle. However, from a bandwidth perspective the two 
options significantly differ. Figure 11A shows that the large MME requires two 
sets of 256B inputs per cycle, summing up to 512B per cycle. On the other hand, 
Figure 11B shows each of the small cores requires two sets of 16B inputs per cycle, 
summing up to 32B per core per cycle. The total amount of input data that is 
required to feed all the 256 small cores is 256 times 32B, which amounts to 8192B. 
This is 16 times more than what a single large MME requires.

The smaller amount of required input data by the MME translates to multiple 
advantages. The 16x reduction in input bandwidth translates to less data transfers 
and higher energy efficiency. Second, the large requirement for input bandwidth 
puts constraints on the minimal GEMM dimensions that allow the system to 
reach high compute utilization. For example, to reach 80% compute utilization on 
modern GPUs with many small matrix multiplication cores, a GEMM dimension 
of m=n=k=~3K is required. In the Intel® Gaudi® 3 AI Accelerator, m=n=k=1K is 
sufficient to utilize 100% of the MACs. If activations are pipelined via 96 MB L2 
cache (which is usually the case), m=n=k=512 is sufficient to utilize MME by 100%. 
In other words, Intel® Gaudi® 3 AI Accelerator requires between ~25x-~200x 
less MACs in a GEMM operation to reach 100% compute utilization compared 
to modern GPUs which reach only 80%. Paradoxically, we see that creating a 
relatively large matrix multiplication accelerator allows hardware to be efficiently 
utilized on smaller GEMM sizes compared to the alternative.

MME Data Types
The Intel® Gaudi® 3 AI Accelerator MME supports all the key AI compute 
datatypes: FP8 (both E4M3 and E5M2), BF16, FP16, TF32 and FP32. All 
datatypes are accumulated into an FP32 accumulator.

As FP8 becomes the favored compute datatype for training and inference, 
Intel® Gaudi® 3 AI Accelerator’s 5th generation MME integrates on-the-fly FP8  
input scaling, reducing the compute load requirements of the TPC for scaling  
to/from FP8.

Fig 11. Comparison of one large MME to 256  
small cores. Despite having the same compute 
capabilities, MME consumes 16× less input data  
than the smaller cores.
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Intel® Gaudi® 3 TPC

Tensor Processor Core Introduction
The Intel® Gaudi® 3 AI Accelerator integrates the 5th-generation Tensor 
Processor Core. The TPC is a general-purpose single instruction, multiple data 
(SIMD) VLIW processor. It is 256B wide and supports FP32, BF16, FP16 & FP8 
(both E4M3 and E5M2) datatypes. In addition, the following integer datatypes are 
supported: UINT32, INT32, UINT16, INT16, UINT8 and INT8.

As opposed to common DSPs, which require a DMA to fetch in and out the 
operands to a local SRAM, the TPC exposes a DMA-free programming model, 
achieved by advanced micro-architectural techniques, which significantly eases 
software development. In addition, the same advanced microarchitecture allows 
consecutive execution, free of idle time, between kernels. This allows 100% 
runtime utilization of the TPC, even for micro-second scale kernels, regardless 
of the location of its inputs and outputs (cache or DRAM). Just like the MME, the 
TPC reaches high compute utilization even when working on small-sized inputs.

TPC Architecture
Figure 12 represents TPC Block diagram and illustrates its functionality.

Fig 12. General matrix multiplication and its mapping to the MME engine block diagram.

C = A (op) B
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Intel® Gaudi® 3 AI Accelerator Media Engine

DECODER ENGINE

Intel® Gaudi® 3 AI Accelerator has fourteen media decoding units. The following 
formats are supported.

Level 4 Video Formats
• HEVC up to 10 profiles, up to 8192x8192 resolution
• Progressive H.264 & SVC base layer & MVC up to 4096x4096 resolution
• VP9 up to profile 2 (10-bit) up to 8192x8192 resolution

Image Formats
• JPEG up to 8192x8192 resolution
• Progressive JPEG up to 8192x8192 resolution

In addition to decode, the block also supports the post processing of the streams.

Post Processing Features
• Image down-scaling (resizing the image):
• Vertical and horizontal scaling can use different scaling ratios
• Maximum output picture size of 4096x4096
• Image up-scaling (up to x3):
• Vertical and horizontal scaling can use different scaling ratios
• Maximum output picture size if 4096x2160
• Image cropping: 
  •  Use definable 4-pixel accuracy crop parameter setting of start,  

position width and height
  • Digital zoom
  • Supported by combining crop and upscaling.
• The PP supports bilinear scaling, Lancos scaling

Intel® Gaudi® 3 AI Accelerator implements two post processing channels  
per decoder block, one with scalar (up and down) and one just to output  
the original image.

Performance
Overall performance across all the hardware instances is show in the Table 7.

Formats Supported
Video decoder supports the following features:

Table 7. Decoder Formats.

Table 6. Format performance.

Video Format* 1080p30 Streams

HEVC 250

VP9 300

H.264 200

Image Format* 1080 img/sec

Jpeg 420 12000

* Please note the actual performance of the decoder 
depends on various factors such as image resolution, 
image quality and format.

Feature Support

Input stream format • YCbCr444, 422, 420
• YCbCr440, 411, 400

Output stream format YCbCr420 or RGB/BGR packet or per planer
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Gen4 x 16  Gen5 x 16 

64 GB/s bidirectional  128 GB/s bidirectional 

6 x HBM2E  8 x HBM2E 

96 GB  128 GB 

2.46 TB/s  3.7 TB/s 

48 MB  96 MB 

6.4 TB/s  19.2 TB/s 

600 W  900 W 

ROTATOR ENGINE

The Intel® Gaudi® 3 AI Accelerator integrates a hardware rotator engine which 
allows performing the following transformations of an input image:
• 2D rotation
• 3D rotation
• Projection
• Mesh: Distort and undistort images
• Re-sampler: Re-samples input data at user-defined coordinates
• Re-scale with polyphase filter

Intel Gaudi® 3 AI Accelerator Memory Attributes

The Intel® Gaudi® 3 AI Accelerator on-die memory has two main advancements 
over its predecessor accelerator. The first is 2x size increase, from 48 MB to a total 
of 96 MB of on-die SRAM. The second advancement is the integration of two-
level cache. The on-die 96 MB of SRAM can be used as a uniformly accessible 
last-level cache (L3) or split to 4 slices of 24 MB L2 cache each, with each slice 
accessible to 2 MMEs and 16 TPCs. L2 provides 2x higher cache I/O throughput 
compared to L3. Using the on-die memory as L2 or L3 cache is fully configurable 
by the Intel® Gaudi® software stack, which dynamically decides per I/O tensor its 
optimal cache allocation.

Intel® Gaudi® 3 AI Accelerator integrates 8 HBM2e devices running at 3.6GHz 
frequency, providing 3.7 TB/s peak HBM bandwidth, 50% higher than the Intel® 
Gaudi® 2 AI Accelerator. Each HBM2e device capacity is 16 GB, reaching a total 
128 GB, 33% higher than the second generation accelerator and 1.6x higher than 
competing GPU solutions having only 80 GB of HBM memory.

The advantages of larger memory capacity are two-fold. One advantage is 
enablement of execution of configurations that require more devices with smaller 
HBM capacity; the other is use of configurations that are more compute-efficient, 
such as increased batch size or avoidance of precomputation.

In the rapidly evolving landscape of Deep Neural Network (DNN) acceleration,  
the Intel® Gaudi® 3 AI Accelerator stands out with its innovative memory 
subsystem. This subsystem is a critical component of our product, designed to 
work in harmony with Matrix Multiplication Engines (MMEs) and Tensor Processor 
Cores (TPCs) to deliver unparalleled performance.

Gaudi® 2 OAM Gaudi® 3 OAM

PCIe

PCIe	Peak	BW

HBM

HBM	Capacity

HBM	Peak	BW

On-die-SRAM

On-die-SRAM	BW

TDP

Table 8. Gaudi 2 OAM to Gaudi 3 memory attributes.
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VIRTUAL SPACE ACCESSIBILITY

At the heart of the Intel® Gaudi® 3 AI Accelerator memory subsystem is a 
Memory Management Unit (MMU) that allows users to operate in a virtual space 
when accessing VRAM. This feature abstracts the complexities of memory 
management, providing a seamless user experience.

ADVANCED CACHING SYSTEM

The Intel® Gaudi® 3 AI Accelerator memory subsystem is equipped with L2 
and L3 caches, which are coupled to each DCORE and HBM memory channels, 
respectively. The cache system is designed to optimize data access with several key 
features:
•  High Throughput: The system provides a total throughput of up to 19.2 TB/s for 

L2 accesses and 6.4 TB/s for L3 accesses.
•  Large Capacity & Set-Associativity: With a capacity of 96 MB and 12-way set-

associativity, the cache system can handle large volumes of data effectively.
•  Allocation Hints: Users can specify whether to cache in L2, in L3, or both, offering 

greater control over data management.
•  Age Replacement Algorithm: The system uses an age replacement algorithm 

that considers user-defined classes and priorities, ensuring efficient use of 
cache resources.

•  Maintenance Commands: These commands enhance cache utilization and 
prevent unnecessary data from consuming HBM resources.

HIGH BANDWIDTH MEMORY INSTANCES

The Intel® Gaudi® 3 AI Accelerator memory subsystem includes 8 High Bandwidth 
Memory (HBM) instances, providing a total capacity of up to 128 GB and a total 
bandwidth of 3.7 TB/s. This substantial capacity and throughput ensure that the 
system can handle large volumes of data effectively.

In conclusion, the Intel® Gaudi® 3 AI Accelerator memory subsystem is a testament 
to our commitment to pushing the boundaries of DNN acceleration. Its advanced 
features and high performance make it an integral part of our product, enabling us to 
deliver a solution that meets the demanding needs of today’s DNN applications.

Fig 13. Intel® Gaudi® 3 architecture with DCORE point-of-view and supporting software layers.
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Networking

The integration of RDMA over Converged Ethernet on the Intel® Gaudi® 3 AI 
Accelerator delivers distinct advantages enabling massive and flexible scaling 
from a single node to thousands. To express the advantages of the solution’s 
scaling capabilities, it’s essential to commence at the foundation of the network – 
the networking architecture contained in the Intel® Gaudi® 3 AI Accelerator.

The Intel® Gaudi® 3 AI Accelerator’s revolutionary NW Sub-system, the 
powerhouse behind seamless data movement and efficient task management. 
At its core features the Intel® Gaudi® Communication Library (IGCL), a master 
conductor that orchestrates data movement. Our system is equipped with a 
programable scheduling mechanism, ensuring smooth activation of engines while 
maintaining task dependencies.

The Intel® Gaudi® 3 AI Accelerator networking sub-system boasts 24 200 
Gigabit Ethernet NIC ports, a Layer2 MAC, and RDMA Engines. This robust setup 
supports high-speed data transfer and superior performance.

To top it all, the Intel® Gaudi® 3 AI Accelerator has four dedicated Aggregation 
Engines. These engines spring into action on behalf of the Communication 
Library, performing summing activities. This means faster computations and 
more efficient data processing.

Fig 14. General matrix multiplication and its mapping to the MME engine block diagram.

Intel® Gaudi® 3 AI Accelerator Technical Paper 19– 5. Compute



Intel® Gaudi® Software Suite 

Designed to facilitate high-performance deep learning (DL) training and inference 
on Intel® ’s AI Accelerators, the Intel® Gaudi® software suite efficiently maps 
neural network topologies to the Intel® Gaudi® hardware family. The software 
suite includes low-level components, such as a graph compiler, an automatic 
kernel fuser and a library of precompiled kernels, as well as integration to the AI 
ecosystem: PyTorch, DeepSpeed, Hugging Face, vLLM, Ray and more. The Intel® 
Gaudi software also includes custom implementations of popular algorithms such 
as Paged Attention, Flash Attention and more.

Graph Compiler and Runtime

The Intel® Gaudi Graph Compiler generates optimized binary code that 
implements the given model topology on Intel® Gaudi®AI Accelerators. It 
performs operator fusion, data layout management, parallelization, pipelining 
and memory management, and graph-level optimizations. The Graph Compiler 
uses the rich TPC kernel library, which contains a wide variety of performance-
optimized operations (for example, elementwise, non-linear, non-GEMM 
operators). Given the heterogenous nature of Intel® Gaudi® 3 AI Accelerator 
hardware (MME, TPC and DMA), the Intel® Gaudi Graph Compiler enables 
effective utilization through parallel and pipelined execution of framework graphs. 
The Intel® Gaudi software uses stream architecture to manage concurrent 
execution of asynchronous tasks, supporting Intel® Gaudi’s unique combination of 
compute and networking, exposing a multi-stream architecture to the framework. 
Streams of different types — compute, networking, and DMA — are synchronized 
with one another at minimal latency with no host involvement.

TPC Programming

The Intel® Gaudi software TPC SDK includes an LLVM-based TPC-C compiler, 
a simulator and debugger. These tools facilitate the development of custom TPC 
kernels. The SDK is used to build the high-performance kernels. Users can thereby 
develop customized deep learning models and algorithms on Intel® Gaudi® AI 
Accelerators to innovate and optimize to their unique requirements. The TPC 
programming language, TPC-C, is a derivative of C99 with added language data 
types to enable easy utilization of processor-unique SIMD capabilities. It natively 
supports wide vector data types to assist with programming of the SIMD engine 
(for example, float64, uchar256 and so on). It has many built-in instructions for 
deep learning, including tensor-based memory accesses, acceleration for special 
functions, random number generation and multiple data types.

Ecosystem Integration

The Intel® Gaudi software is natively integrated into PyTorch, both 1.x and 2.x.  
It’s also integrated to many popular software packages: DeepSpeed for 
distributed training and inference, Hugging Face for using Transformers and 
Diffusers models, vLLM for cutting-edge LLM serving throughput, and more.  
The Intel® Gaudi software PyTorch Python packages expose several Gaudi 
optimized operations, such as Flash Attention, to leverage the existing ecosystem 
innovation around LLM training and inference.

Gaudi Software Suite
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Quantization

Intel® Gaudi® 3 AI Accelerator has even more support for the FP8 datatype than 
its predecessor. The Intel® Gaudi software exposes this to the user in the form of 
an automated quantization tool for converting existing models with high accuracy 
and improved throughput, as well as supporting a Transformer Engine-like API 
for compatibility with existing models. The Intel® Gaudi software also supports 
int4 weight-only quantization schemes, such as AWQ and GPTQ, and allows user 
innovation in those areas by open-sourcing its quantization tool under the umbrella 
of Intel® Neural Compressor.

Automatic Kernel Fusion

Kernel fusion has multiple benefits for training and inference, improving memory 
bandwidth, amortizing overheads and for inference also reducing the overall 
memory capacity and allowing an increase in the batch size for higher efficiency.
The Intel® Gaudi software includes a cutting-edge, MLIR-based kernel fuser, 
capable of automatically generating fused kernels from sequences of primitive 
kernels in the user graph, without the need for user intervention. These kernels 
are then interfaced to the graph compiler to utilize Intel® Gaudi® Accelerator’s 
heterogeneous architecture.

Fig 15. Intel® Gaudi® software stack.

Intel® Gaudi® 3 AI Accelerator
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Networking 

As deep learning training is usually performed on multiple devices, the Intel® 
Gaudi® 3 AI Accelerator Network Interface Controllers (NICs) are an essential 
component in the overall Intel® Gaudi® third-generation training solution. 
Intel® Gaudi® 3 AI Accelerator NICs are customized to fit a distribution of a 
DNN graph between the devices in the network (scale-out). The NIC provides 
the compute engine with remote direct memory access (RDMA) featuring 
high bandwidth and low latency over reliable connection without any software 
intervention. To fit common cloud infrastructure, NIC ports use Ethernet 
(Eth) connectivity with an aggregated bandwidth of 4.8 Tb/s in each direction, 
supporting multiple port configurations. The NIC implements RoCE v2 
specification, benefiting from the commonly used Ethernet infrastructure 
and the reliable and low latency RDMA of the InfiniBand (IB) protocol.

Intel® Gaudi® Accelerator implementation extends RoCE v2 specification to 
better fit it to DNN applications and large-scale deployments enabling linear 
scalability over thousands of Intel® Gaudi® Accelerators.

The upcoming sections highlight the main RoCE extension that Intel® Gaudi® 3 AI 
Accelerator supports.

Mapping MPI Collective Operations to RDMA

RDMA protocol supports remote memory access using natural read and write 
operations. RDMA read and write operations assume that the initiator has the 
pointers for both the local and remote memory. However, DNN applications 
commonly use MPI style collective operations that are based on a send-
receive approach.

This approach defines three main elements: first, the sender side which has the 
pointer to the send buffer; second, the receiver side which has the pointer to the 
receive buffer; and third, a rendezvous flow to move data between the two sides. 
Therefore, MPI collective operations do not map naturally to RDMA read and  
write operations.

There are many ways to perform this mapping, each one with its own pros and 
cons. Mapping MPI operations to RDMA send-receive operations is one option. 
This option does not solve the rendezvous flow. When the sender sends data to 
the receiver before the receiver has posted the receive operation, a RNR NACK 
will be sent to initiate a retransmission, causing a significant performance drop.

Another option is to implement the rendezvous on the receiver side using a 
temporary buffer and later initiate a mem-copy once the receiver buffer is 
available. This option has many drawbacks such as high latency and high memory 
capacity.

Intel® Gaudi® Accelerator implements a hardware-based implementation that 
solves the rendezvous flow on the sender side and thus ensures the data is sent to 
the receiver only once and without the need for a mem-copy. This approach allows 
us to expose a simple collective API to the user, offloading the complexity from the 
CPU to NIC’s hardware ensuring minimal latency and high message rate.
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Offloading Collective Kernels to HW

In practice, execution of collective operations is done by splitting it to multiple 
send-receive operations between the ranks. The HLS-3 reference server includes 
eight different Intel® Gaudi® Accelerators. Each device is assigned with a unique 
rank ID. The connectivity between devices is done using multiple ports. Therefore, 
a collective operation needs to be split between the ranks and between the multiple 
ports connecting each rank. The splitting process consumes CPU resources, 
potentially lowering port utilization and its transmission bandwidth. Intel® Gaudi 3 
AI Accelerator NICs offload the collective operation to the hardware, allowing the 
hardware to achieve full bandwidth with a buffer size as small as 300KBs.

Congestion Control - Timely Based

As DNN clusters become ever larger, congestion over the network becomes a 
more predominant problem. Congestion on lossy networks may cause significant 
performance degradation due to packet drop. Enabling Priority-based Flow 
Control (PFC) to achieve lossless networks, prevents packet drops but congestion 
may spread between the switching layers. RoCE v2 implements RoCE Congestion 
Management (RCM) based on Explicit Congestion Notification (ECN). However, 
RCM is a crude method, resulting in large throughput variability.

In the Intel® Gaudi® 3 AI Accelerator, congestion control was expanded to not 
only support ECNs but also support timely based congestion schemes such 
as SWIFT®. These algorithms use delay (RTT calculation) as their congestion 
indication signal and as such have a much more fine-grained control over ECN.

Multi-Path Load Balancing (Packet Spraying)

Connecting large clusters of nodes requires multi-layer switching topologies. 
In such cases, the network connectivity between nodes may include multiple 
paths. To fully utilize the network’s bandwidth between two nodes and reduce 
congestion, traffic should be balanced between all possible equal cost paths. 
Deploying equal-cost multipath (ECMP) can provide a solution. However, as 
discussed above, large clusters may also suffer from congestion which impacts 
the different paths, reducing throughput and increasing flow’s completion time.

To mitigate congestion buildups, we introduced a load balancing system. 
The system considers the path’s load and adapts the cost function to keep the 
bandwidth utilization high and latency low. The load balancing system provides  
a method to re-order the packets traversed on different paths.

RDMA Reliable Connection (RC) Memory Footprint

Deploying a large cluster of all-to-all connectivity using RDMA reliable connection 
can suffer from unscalable memory footprint. Consider a cluster of N nodes, each 
with P processes. If all P processes wish to communicate with all processes on all 
the nodes, RDMA Reliable Connection service requires P^2×(N-1) QPs on each 
node. Each QP includes a context with size of O(100Bytes) and a work queue 
with size of O(10KBytes). In our implementation, the QPs are handled by the 
Intel® Gaudi® Accelerator Collective Communication Library (CCL). CCL most-
commonly opens four QPs for each peer node in the cluster, so the total number of 
QPs on each node is 4×(N-1). Therefore, the memory footprint becomes scalable 
with the number of nodes.
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In-network Reduction

To reduce compute requirements for reduction operations and to provide 
excellent overlap with the communication phase, the Intel® Gaudi® 3 AI 
Accelerator supports the capability of performing reduction operations on the 
network path. The supported operations are sum, min and max. In addition, the 
reductions support different data types including FP32, FP16, BF16 and FP8. 
Further, the BF16 and FP16 reductions can be performed with FP32 accumulation 
for better accuracy.

Network and Compute Synchronization

Some DNN accelerator systems use discrete NICs to communicate with 
other nodes in the cluster. In those systems, the synchronization between 
the networking that transmits data and compute engine that consume data 
suffer from high latency due to high host CPU utilization. The Intel® Gaudi® 
3 AI Accelerator integrates both the NIC and compute engines and the 
synchronization between them is done within the chip with minimal latency and 
without host intervention.

Tensor Semantics

Standard RDMA operations are designed to work with contiguous buffer, 
but DNN applications are designed to work in tensor and sub-tensor semantics. 
Mapping sub-tensors to a contiguous buffer to work with RDMA operations can be 
very complex or even not scalable. Therefore, the Intel® Gaudi® 3 AI Accelerator 
introduces a tensor engine within the NIC that can access both local and remote 
memory in tensor semantics, much like all other engines in the chip.

Selective Retransmission and Out of Order Delivery

To provide high throughput and lower latency, the current RoCE implementation 
depends on networks being lossless. This is attributed to InfiniBand (IB)  
networks relying on credits while Ethernet based networks assume loss.  
Recovery implementation for packet loss in IB is go-back-N, i.e., retransmitting 
back from ONA once a NACK arrives. This greatly affects bandwidth and the  
flow completion time and tail latency, even in cases of sporadic drops. This is 
because all packets from ONA to NTS are re-transmitted.

Since data centers are moving to lossy architecture, mainly because Priority-
based Flow Control (PFC) has scalability limitations, Intel® Gaudi® 3 AI 
Accelerator RoCE implementation extends the IB transport layer spec and 
allows Selective ACKing by the responder and Selective Re-Transmission by 
the requester. For all other purposes, the IB spec is still valid. This allows Intel® 
Gaudi®3 AI Accelerator’s RoCE to be even more scalable than TCP/IP with 
selective ACK implementation.
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Cluster Architecture

Using standard Ethernet switches, modular and high-performance clusters  
can be built to the desired scale. The following shows an example of building  
a 512-node cluster (4096 Intel® Gaudi® 3 AI Accelerators) using 16-node sub-
cluster building blocks. In an Intel Gaudi 3 AI Accelerator-based server, each OAM 
card has a NIC port connected to 3 of the OSFP scale-out ports of the server. 
Then a sub-cluster is established by connecting 16 servers to 3 64-port 800 Gbps 
Ethernet leaf switches. In the sub-cluster, any card in a system can communicate 
with any other card in the other systems through all 3 of the leaf switches. Finally, 
32 of the sub-clusters are networked together using 48 64-port 800 Gbps 
Ethernet spine switches. This topology forms a 3-ply network, where all 64-ports 
of each leaf and spine switch are utilized.

Figure 16 features representations of GenAI system scale out as a single node,  
16-node sub-cluster, and 512-node cluster.

Fig 16. Intel® Gaudi® 3 AI Accelerator – Scale-out Cluster Architectures.
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Putting It All Together: Combining Hardware and  
Software for a Unified AI Acceleration Solution

The Intel® Gaudi Software Suite offers a comprehensive set of capabilities that 
significantly enhance the Intel® Gaudi® 3 AI Accelerator hardware utilization. In this 
chapter, we delve into the seamless integration of various components from the 
Intel® Gaudi Software Suite, illustrating how they collaboratively reduce workload 
runtimes. By examining a practical example drawn from Large Language Models 
(LLMs), we highlight the impact of key software layers on hardware efficiency.

Naïve Execution of a Transformer Sub-Sequence

Language Models (LLMs) are composed of a series of repeating Transformer 
layers. Each Transformer layer involves an intricate sequence of operations, 
including:
1.  General Matrix Multiplication (GEMM): A fundamental operation for linear 

transformations.
2.  Batched-GEMM: An optimized variant of GEMM that efficiently processes 

multiple inputs.
3.  Normalization: Encompasses techniques such as softmax, layer normalization, 

or RMSNorm.
4.  Residual-Add: A crucial component for preserving information flow.
5.  Non-Linear Activation Function: Choices include GELU or SwiGLU.
6.  Dropout (Training Only): A regularization technique to prevent overfitting.

In Figure 17 we visualize a sub-sequence of operations that  
repeat twice within a transformer layer.

Blue colored graph nodes (rounded-corner rectangles) represent MME 
operations, while green colored graph nodes represent TPC operations. 
The sub-sequence of operations comprises the following steps:
1. GEMM: Executed by the MME
2. Residual-Add: Executed by the TPC
3. Normalization: Executed by the TPC

Executing the sequence of operations without any optimization results in the 
runtime illustrated in Figure 18. All eight MME units logically work as a single  
unit and execute the GEMM to completion. Each TPC kernel was written using  
the Intel® Gaudi® Accelerator TPC SDK, which uses TPC’s ISA and 
microarchitecture efficiently.

Fig 17. Illustration of a Transformer layer sub-graph from large-language model.
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In the execution shown in Figure 18, entire GEMM output is written to cache. 
However, since the full GEMM output can exceed the cache capacity,  
as is usually the case in large workloads, all GEMM outputs that do not fit in cache 
will be written to HBM. The TPC starts executing its first kernel after all GEMM 
result writes are completed. When TPC starts its execution, due to the large 
input size, some of the inputs will be read from the HBM, resulting in relatively 
long latency (1–2usec), which is determined by the HBM. The second TPC kernel 
experiences the same long latency as the first kernel.

Automatic Kernel Fusion 

One immediate improvement that is delivered by the Intel® Gaudi® software 
suite is automatic kernel fusion. The two TPC kernels are automatically fused to 
generate a new kernel that contains the union of operations within the separate
kernels. Fused kernel’s inputs and outputs are the external inputs and outputs 
of the fused kernels. Fusing the kernel saves the I/O of reading or writing 
intermediate results between the original kernels.

Fusing the sub-graph in Figure 17 results in the sub-graph illustrated in Figure 19.
1.  Saving I/O time for writing a result from one kernel, then reading the same result 

in the following kernel.
2. Inter-kernel latency saving.

Executing the sub-graph of Figure 19 results in the execution illustrated in 
Figure 20. Runtime gain manifests in the two ways explained above. First, there 
is only one latency window between executing engines. Second, entire TPC 
runtime has decreased since the normalization part of the fused kernel reads its 
input internally from the TPC and not from an external I/O, thereby saving I/O time.

Fig 18. Illustration of timeline execution for naïve software implementation of the sub-graph in Figure 17.
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Fig 19. Illustration of the sub-graph from Figure 17 after the fuser has fused the two consecutive TPC kernels to one.
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Fig 21. Illustration of pipelining between MME and TPC through the cache, when MME is the producer and TPC is the consumer.
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Fig 20. Illustration of device execution of the sub-graph from Figure 19.
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Producer-Consumer Pipelining by the Graph Compiler

The Graph Compiler described in previous sections is specifically designed to 
optimize the execution of workloads on the Intel® Gaudi® 3 AI Accelerator’s 
heterogeneous architecture. In cases where it is logically feasible, dependent
engines are scheduled to operate in a pipelined manner, establishing a producer-
consumer execution dependency. The producer writes its output to the L2 cache, 
the highest cache hierarchy shared by the MME and TPC. Once the output is fully 
written, the consumer reads this output from the cache as input. Intel® Gaudi® 
software suite ensures that the produced data fits within the cache, and the 
granularity of work allows for efficient device utilization.

By leveraging cache-based pipelining, we achieve minimal latency between the 
producer and the consumer, resulting in optimal utilization of all device engines. 
Figure 21 illustrates this producer-consumer relationship: a GEMM operation 
executed by the MME and a fused residual add & normalization operation 
executed by the TPC. The input and output of the GEMM operation are split into 
four slices, with each output slice fully produced by the MME and subsequently 
read as input by the TPC.
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Adding Network to the Mix

As stated above, Intel® Gaudi® 3 AI Accelerator architecture inherently supports 
running all engines in parallel, including the NIC. Expanding upon the example 
from Figure 19, we add all-reduce collective communication that follows the 
GEMM operation and before residual add. Figure 22 illustrates the sub-graph 
that is formed when adding the all-reduce collective operation. The all-reduce is 
required in cases of Tensor-Parallelism split of an LLM between multiple devices, 
for training and inference use cases.

In a naïve execution, the all-reduce will interfere with the pipelining. The result is 
sequential execution of the GEMM, allreduce and fused TPC kernel, as illustrated 
in Figure 23. We see no parallelism between the engines and long latencies 
between the engine activations.

By structuring the LLM code in a manner that enables parallel execution of 
all-reduce operations, the Graph Compiler and HCL can efficiently distribute 
workloads across multiple engines. This approach maximizes device utilization. In 
Figure 24, we visualize the effective execution on Intel® Gaudi® 3 AI Accelerator of 
the sub-graph depicted in Figure 22. Specifically, the diagram illustrates the data 
flow: MME as the producer to the NIC, the NIC being a consumer of MME’s output 
and producer to the TPC, and TPC being a consumer of NIC output.

Fig 22. Illustration of the sub-graph from Figure 19 with an all-reduce collective communication operation between the GEMM and fused TPC kernel.
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Fig 24. Optimized scheduling of the MME, NIC and TPC, with a producer-consumer relation between all three engines.
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Fig 23. A naïve execution of the operations in the subgraph of Figure 22.
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Intel Gaudi® 3 Performance Improvements

Intel® Gaudi® 3 AI Accelerator is the third generation of the Intel Gaudi AI 
Accelerator family. The large HBM capacity and bandwidth allow the Intel® 
Gaudi® 3 AI Accelerator to achieve state-of-the-art GenAI training and inference 
performance. 

In training scenarios, virtually all of the advanced capabilities of Intel® Gaudi® 3AI 
Accelerator over the previous generation come into play. Since training scenarios 
are compute-intensive, the increased compute ratio provides immediate gain. 
The increased HBM bandwidth allows larger compute to manifest the increased 
compute power. In addition, the larger HBM capacity also contributes to improved 
performance. Larger HBM capacity allows increased batch size, enabling higher 
compute utilization and allows avoiding re-computation of certain parts of the 
workload or avoiding model-parallel splits, which add networking operations 
during runtime.

In general, LLM inference throughput is determined by the available HBM 
bandwidth, which is used for reading the model parameters and context window. 
When comparing Intel® Gaudi® 3 AI Accelerator to Intel® Gaudi® 2 AI Accelerator, 
we expect that for small LLMs (13B-sized model or smaller), speedup is similar 
to the ratio of HBM bandwidths between the two generations of accelerators, 
roughly 1.5x. However, when comparing larger LLM models, like LLama-70B, 
improvements are expected to be greater than the HBM bandwidth ratios and 
surpass a 2x ratio. The larger improvement is due to the larger memory capacity 
that is available for Intel® Gaudi® 3 AI Accelerator This larger capacity allows use 
of increased batch size and therefore more samples processed per given amount 
of time.

Measured performance of Intel® Gaudi® 3 AI Accelerators will be updated and 
published at Model Performance for Intel® Gaudi® 3 AI Accelerators coinciding 
with the Intel Gaudi software releases.

Fig 25. Intel® Gaudi® AI Accelerator Product Line.
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