

ADNOC Accelerator Programme Artificial Intelligence Сонокт 2

Foundations of Al in the Energy Industry

© 2025 World Wide Technology, Inc. All rights reserved.

Foundations of AI in the Energy Industry

What is artificial intelligence and machine learning?

AI ML	AI (artificial intelligence) refers to machines or software performing tasks that usually require human intelligence	ML (machine learning) enables computers to learn from data, identify patterns, and improve over time without explicit programming
HOW?	 Rule-based human instructions Experience-based, learning from data 	 Experience-based, learning from data
JALOGY A chess student learns by	 ✓ Memorising rules and strategies ✓ Practicing and playing against opponents, learning from mistakes and successes to improve over time 	 Practicing and playing against opponents, learning from mistakes and successes to improve over time

2

How does AI fit into the energy industry?

Al/ML can predict safety issues, equipment failures, and volatile consumer demand to reduce uncertainty

Worker safety can be enhanced during drilling

Optimising

operations can

reduce emissions

Pipeline maintenance can be intelligently forecasted and automated

ADNOC's top 10 Al use cases

Upst	ream	Downstream 🦲 Su	pport Sustainability	
Value chain	Al u	se case	Description	Technology type
	1.	ROBOWELL	Autonomously operates wells	Optimisation models
	2.	AR360	Boosts new well production & extends existing well lifespan	Predictive analytics
	3.	SMARTI	Improves vessel safety and security	Image and video analysis
	4.	DRILLTECT	Detects anomalies in real-time from surface drilling data	Predictive analytics
	5.	CORROVISION	Automates corrosion detection and classification	Image and video analysis
	6.	Extruder predictive analysis	Enhances production as less extruder equipment shutdowns	Predictive analytics
	7.	Al polymer optimisation	Cuts transition time and speeds new grade development	Predictive analytics
	8.	ILMS	AI Logistics Management System	Optimisation models
	9.	Skill Sphere	Advises and coaches on career paths	Conversational AI
	10.	EmissionX	Monitors, reports & forecasts emissions data across facility	Predictive analytics

RoboWell empowers fully remote operations while maximising production efficiency

Cloud-based optimisation models enabling autonomous well control for 300+ wells

- Improve well safety
- Increase production capacity
- Reduce travel and physical interventions
- Lower emissions

- 30% gas lift optimisation
- 5% boost in operating efficiency

Advanced Reservoir (AR) 360 enhances recovery rates and extends well lifespan in refineries

Goals

Centralised forecasting platform to optimise field development planning and enhance reservoir management across 30+ reservoirs

- Increase new well output
- Extend well lifespan
- Accelerate planning cycles
- Optimise injection
- Improve forecasting
- Reduce emissions
- 20% increase in well lifespan
- 10% boost in oil recovery from waterflooding
- 10% reduction in infill well drilling costs
- 75% faster model review and opportunity generation

Metrics

Upstream

SMARTi elevates maritime safety by enabling proactive prevention and real-time detection

CCTV image and video analysis to monitor safety behavior, incidents, and hazards across 86+ vessels

- Reduce safety incidents
- Increase safety compliance

- 90% image processing accuracy for violation detection
- Less than 2-second alert response time
- 24/7 system for business continuity

Al can solve many more industry challenges

Exploration

How can we identify oil and gas reservoirs faster with greater accurately?

Drilling and extraction

How can optimise drilling operations?

- **Transportation** How can we maintain the integrity of pipelines efficiently?
- **Storage** How can we monitor tank levels and detect leaks?

Logistics and services

How can we optimise maritime routes to ship our products more efficiently?

Chemicals production

How can we enhance yield in production of chemicals such as ammonia?

- Downstream
- Refining crude oil, petrochemicals, other chemicals
 How can we ensure safety and environmental

How can we ensure safety and environmental compliance in refinery operations?

• **Processing natural gas** How can we reduce energy costs in

processing natural gas?

- **Gas and petroleum liquefaction** How can we prevent cryogenic equipment failure?
- Marketing and distribution

How can we forecast demand in petroleum and LNG markets?

Let's explore how we could build two of these examples

Exploration

How can we identify oil and gas reservoirs faster with greater accurately?

• Drilling and extraction

How can optimise carbon storage?

- **Transportation** How can we maintain the integrity of pipelines efficiently?
- **Storage** How can we monitor tank levels and detect leaks?

Cther operations

Logistics and services

How can we optimise maritime routes to ship our products more efficiently?

Chemicals production

How can we enhance yield in production of chemicals such as ammonia?

Downstream

- Refining crude oil, petrochemicals, other chemicals How can we ensure environmental compliance in refinery operations?
- **Processing natural gas** How can we reduce energy costs in processing natural gas?
- **Gas and petroleum liquefaction** How can we prevent cryogenic equipment failure?

Marketing and distribution

How can we forecast demand in petroleum and LNG markets?

Simulation #1: Carbon capture and storage (CCS)

Determining where, how much and what pressure to inject CO₂ into underground reservoirs is difficult. **How can we improve storage efficiency and reduce leak risk?**

Proposed solution	Data required	Potential models	Outcome
Optimised CCS Predictive model can simulate reservoir behavior and predict outcomes based on various injection parameters. Without data, there can be	 Real-time Data Pressure Temperature Flow rates Intermittent data Rock permeability Seismic activity Ground deformations Source Sensor data INSAR satellite data 	 Gradient boosting trees (GBT) model creates multiple decision tress to predict outcomes based on different injection settings Neural net can model complex relationships between variables to predict CO₂ plume spread 	 Increased carbon storage volume through optimisation Reduced leak risk from finding optimal storage conditions in reservoirs and detecting anomalies in sensor readings

Simulation #2: Refinery emissions

Refineries used rules-based systems to operate large fired heaters and boilers to burn fuel, which contribute CO_2 and NOX emissions. How can we reduce emissions at refineries?

Proposed solution	Data required	Potential models	Outcome
Al carbon footprint optimiser tool Al leverages emission and resource usage data to suggest small real-time adjustments to the air/fuel ratio, burner configurations, or operating conditions to maximise combustion efficiency and minimise emissions	 Real-time Data Fuel type, flow rate Oxygen levels Power usage Air to fuel ratio Emission readings Flare analysis Source Sensor data Process control sys. FLIR camera 	 Random forest predicts Reinforcement learning uses real-time data in dynamic system to interact with environment and learn optimal action sequences to achieve low emissions target 	 Reduced CO₂ emissions from reduced fuel usage Reduced NOX emissions from being able to avoid oxygen rich or deficient environments Improved environmental compliance

11

AI/ML adoption by industry leaders

	Digital oil field product maximises oil production	Al Solar Mapper reduces carbon footprint	Demand forecasting reduces production / inventory errors
Goal	 Maximise oil production 	 Solarise all service stations 	 Predict demand fluctuations for production and inventory adjustment
- Solution	 Genetic algorithms and digital twins optimised upstream assets, boosting oil production by 60% in one field 	 Solar Mapper optimises solar adoption by estimating panel output for 1,000+ critical sites across 90% of France 	 Developed forecasting tool for petrochemical products, reducing errors by 25%
Data	 Sensors, seismic data 	 Google Earth Engine, with ML methods enhancing 3D data in remote regions 	 Market trends, production facilities, and transportation networks

Foundations of AI in the Energy Industry

Recap

 \checkmark

In this session, we covered:

How AI and ML integrate into the oil and gas value chain

 \checkmark

Problems AI and ML can solve in the industry

 \checkmark

Real-world examples of AI and ML applications by industry leaders