
© 2025 World Wide Technology, Inc. All rights reserved. 0

ADNOC Accelerator Programme

Artificial Intelligence

COHORT 2

© 2025 World Wide Technology, Inc. All rights reserved.

Introduction to Python

for Data Science

© 2025 World Wide Technology, Inc. All rights reserved. 1

Introduction to Python

LEARNING OBJECTIVES

1

2

3

Understand the fundamentals of programming

Grasp basic principles of Python

Leverage conditional statements, loops and functions

© 2025 World Wide Technology, Inc. All rights reserved. 2

You can instruct your computer to execute certain

Programming allows you to talk to your computer

Some common

programming languages

PYTHON

x = input("Type a number: ")
y = input("Type another number: ")
sum = int(x) + int(y)
print("The sum is: ", sum)...

!DOCTYPE html>
<html lang="en">
<head>
<title>Page Title</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1">
<style>
body {
 font-family: Arial, Helvetica, sans-serif;

}……

Simple as addition

Complex as website design

commands

© 2025 World Wide Technology, Inc. All rights reserved. 3

Python was designed to be both practical and powerful

Guido Van Rossum released Python in 1991 with

the vision of creating a language that was easy to

read, easy to write, and powerful enough to be

used in real world application

The name Python

doesn’t come from the

snake. It comes from

a comedy group

called Monty Python’s

Flying Circus.

Python is go-to language across industries

like oil & gas, finance, and healthcare

due to its:

 Ease of use & productivity

 Powerful data science & AI support

 Seamless integration

 Scalability

 Automation & scripting

 Cross-platform & open-source

© 2025 World Wide Technology, Inc. All rights reserved. 4

Python is simple, readable, and versatile

Python requires fewer lines of code than other languages,

meaning faster and more efficient development

© 2025 World Wide Technology, Inc. All rights reserved. 5

Code Blocks are defined by indentation
Dynamic Typing means you don’t have

to specify data types explicitly

Simple Readable Syntax eliminates need for special characters

No need to worry about semi columns or braces

Indentation shows the hierarchy of

the code, that is, this line belongs to

the block of code

© 2025 World Wide Technology, Inc. All rights reserved. 6

Variables store value and track data that can change over time

A variable in Python functions much

like those in math – it holds values

that can change and be used in

calculations

Numbers: Integers, real numbers, and so on

Strings: Ordered sequence of characters

List: Ordered collection of objects

Variables can be of many types

What do variables do

for you?

Keep track of the changing data in

your programme

© 2025 World Wide Technology, Inc. All rights reserved. 7

Basics of Python: Data Structures

© 2025 World Wide Technology, Inc. All rights reserved. 8

Lists are used for storing ordered sequences of data

Command Output

Mutability of lists allows you to modify elements even after printing

List of daily oil production (in barrels)

oil_production = [3500, 4200, 3900, 4100, 3800]

Displaying Original List

print("Original List:", oil_production)

Accessing elements to show order is preserved

print("First day's production:", oil_production[0])

Accessing first element

print("Last day's production:", oil_production[-1])

Accessing last element

Mutable: Lists allow modification of elements

oil_production[2] = 4000 # Changing value for Day 3

Display updated list

print("Updated List:", oil_production)

© 2025 World Wide Technology, Inc. All rights reserved. 9

Tuples are essentially fixed lists which cannot be modified

Immutability of tuples does not allow modification

Command Output

Tuple storing wellhead location (Latitude, Longitude, Depth)

wellhead_location = (24.4667, 54.3667, 3000) # Abu Dhabi coordinates +

depth in meters

Ordered: Tuples maintain the sequence in which elements are defined

print("Original Tuple:", wellhead_location)

Accessing elements to show order

print(f"Wellhead Latitude: {wellhead_location[0]}")

try:

 wellhead_location[2] = 3500 # Attempting to change depth

except TypeError as e:

 print("Error:", e) # This will confirm immutability

© 2025 World Wide Technology, Inc. All rights reserved. 10

Dictionaries store unique key values of data

Command Output

Python dictionaries allow fast lookup just like a real dictionary

Dictionary storing oil production with duplicate keys

well_production = {

 "Well A": {"Oil": 4000, "Gas": 25000},

 "Well B": {"Oil": 3200, "Gas": 27000},

 "Well A": {"Oil": 4200, "Gas": 26000}, # Overwrites previous "Well A"

}

Display dictionary to show unique keys behaviour

print("Dictionary with Unique Keys:", well_production)

Fast Lookup: Retrieving oil production for "Well B" using O(1) complexity

print("Oil Production for Well B:", well_production["Well B"]["Oil"],

"barrels")

© 2025 World Wide Technology, Inc. All rights reserved. 11

Sets are unordered mutable collections of data

Command Output

Only unique values get stored within a set

Defining a set of well names

well_names = {"Well A", "Well B", "Well C", "Well D"}

Printing the set multiple times to show unordered nature

print("Set of Well Names:", well_names)

Defining a set with duplicate values

oil_fields = {"Field X", "Field Y", "Field Z", "Field X", "Field Y"}

Printing the set

print("Unique Oil Fields:", oil_fields)

© 2025 World Wide Technology, Inc. All rights reserved. 12

Which of these do not allow modification?

A. Lists

B. Tuples

C. Sets

 d ce

© 2025 World Wide Technology, Inc. All rights reserved. 13

Which of these do not allow modification?

A. Lists

B. Tuples

C. Sets

 d ce

© 2025 World Wide Technology, Inc. All rights reserved. 14

Decision making can also be simplified through Python

Let’s say you want to keep track oil production in

different oil rigs

How would you do that?

© 2025 World Wide Technology, Inc. All rights reserved. 15

Decision making can also be simplified through Python

Let’s say you want to keep track oil production in

different oil rigs

How would you do that?One way to do this is through conditional statements

© 2025 World Wide Technology, Inc. All rights reserved. 16

Basics of Python: Conditional Statements

Conditional statements allow decision-making by controlling the order of following commands

© 2025 World Wide Technology, Inc. All rights reserved. 17

If statements are used for basic one-way decision making

Command Output

Checks if statement is true

If true → code runs

If false → code doesn’t run

if oil_production < 4000:

 print("Alert: Oil production is below the threshold!")

oil_production = 3500 # Barrels per day

© 2025 World Wide Technology, Inc. All rights reserved. 18

If statements are used for basic one-way decision making

Command Output

Checks if statement is true

If true → code runs

If false → code doesn’t run

if oil_production < 4000:

 print("Alert: Oil production is below the threshold!")

oil_production = 3500 # Barrels per day

Create an alert for when oil production falls below 4000 barrels

© 2025 World Wide Technology, Inc. All rights reserved. 19

If-else statements allow two-way decision making

Command Output

If true → first lock runs

If false → second lock runs

if gas_leak_detected:

 print("Warning: Gas leak detected! Initiate emergency shutdown.")

else:

 print("System is stable. No gas leak detected.")

gas_leak_detected = True

© 2025 World Wide Technology, Inc. All rights reserved. 20

If-else statements allow two-way decision making

Command Output

If true → first lock runs

If false → second lock runs

if gas_leak_detected:

 print("Warning: Gas leak detected! Initiate emergency shutdown.")

else:

 print("System is stable. No gas leak detected.")

gas_leak_detected = True

Send a warning if gas leak is detected

© 2025 World Wide Technology, Inc. All rights reserved. 21

If-elif-else statements check for multiple conditions

Command Output

If true → one lock runs

If false → checks elif condition

Both if and elif false → runs

else condition

if production > 5000:

 print("High-performing well")
production = 4500 # Barrels per day

elif production > 3000:

 print("Moderate-performing well")

else:

 print("Low-performing well - Needs attention!")

© 2025 World Wide Technology, Inc. All rights reserved. 22

If-elif-else statements check for multiple conditions

Command Output

If true → one lock runs

If false → checks elif condition

Both if and elif false → runs

else condition

if production > 5000:

 print("High-performing well")
production = 4500 # Barrels per day

elif production > 3000:

 print("Moderate-performing well")

else:

 print("Low-performing well - Needs attention!")

Design a system to track each well’s performance

© 2025 World Wide Technology, Inc. All rights reserved. 23

Nested if statements check condition inside another condition

Command Output

Outer if true→ Inner if runs

if is_operational: is_operational = True
safety_checks_passed = False if safety_checks_passed:

 print("Rig is operational and safe.")
 else:
 print("Rig is operational, but safety checks

failed!")

else:
 print("Rig is not operational.")

© 2025 World Wide Technology, Inc. All rights reserved. 24

Nested if statements check condition inside another condition

Command Output

Outer if true→ Inner if runs

if is_operational: is_operational = True
safety_checks_passed = False if safety_checks_passed:

 print("Rig is operational and safe.")
 else:
 print("Rig is operational, but safety checks

failed!")

else:
 print("Rig is not operational.")

Track if a rig is operational and if operational, is it safe

© 2025 World Wide Technology, Inc. All rights reserved. 25

Loops make your code shorter, smarter, and faster

Loops automate repetition so you don’t have to write the same code multiple times

Before

Daily production data for multiple wells

wells = {"A": 1000, "B": 1200, "C": 1100, "D":

950}

Calculating production after a week (7 days)

well_A_weekly = wells["A"] * 7

well_B_weekly = wells["B"] * 7

well_C_weekly = wells["C"] * 7

well_D_weekly = wells["D"] * 7

print("Weekly Production:")

print("Well A:", well_A_weekly, "barrels")

print("Well B:", well_B_weekly, "barrels")

print("Well C:", well_C_weekly, "barrels")

print("Well D:", well_D_weekly, "barrels")

© 2025 World Wide Technology, Inc. All rights reserved. 26

Loops make your code shorter, smarter, and faster

Loops automate repetition so you don’t have to write the same code multiple times

After

for well, daily_production in wells.items():

 weekly_production = daily_production * 7

 print(f"Well {well}: {weekly_production} barrels")

© 2025 World Wide Technology, Inc. All rights reserved. 27

Different loops are used based on iterations and actions

For loops repeat a sequence

a fixed number of times
While loops keep repeating as

long as a condition is true

Break statements are used to

exit a loop completely

Continue statements skip

current iteration but continue

the loop

© 2025 World Wide Technology, Inc. All rights reserved. 28

Functions make it easier to do tasks repeatedly

=When you want to do some task repeatedly in Python, you can create a function that can

complete the task without being given instructions again and again

Before

Daily production and operational hours for multiple wells

wells = {

 "A": {"production": 1000, "hours": 20},

 "B": {"production": 1200, "hours": 12},

 "C": {"production": 1100, "hours": 40},

}

Efficiency = Oil Production / Operational Hours

eff_A = wells["A"]["production"] / wells["A"]["hours"]

eff_B = wells["B"]["production"] / wells["B"]["hours"]

eff_C = wells["C"]["production"] / wells["C"]["hours"]

print("Production Efficiency:")

print(f"Well A: {eff_A} barrels/hour")

print(f"Well B: {eff_B} barrels/hour")

print(f"Well C: {eff_C} barrels/hour")

© 2025 World Wide Technology, Inc. All rights reserved. 29

Functions make it easier to do tasks repeatedly

When you want to do some task repeatedly in Python, you can create a function that can

complete the task without being given instructions again and again

After

Function to calculate production efficiency

def calculate_efficiency(production, hours):

 return production / hours

for well, data in wells.items():

 efficiency = calculate_efficiency(data["production"], data["hours"])

 print(f"Well {well}: {efficiency:.2f} barrels/hour")

© 2025 World Wide Technology, Inc. All rights reserved. 30

Functions can be defined using keywords

A function must be defined

by using the def keyword

To run a function, call it using its name

followed by ()

return keyword is used to

get the results

Functions take inputs known as

parameters (hours, flow rate)

© 2025 World Wide Technology, Inc. All rights reserved. 31

Basics of Python

In this session, we covered:

Understanding fundamentals of programming

Learning about variables and data structures in Python

Using conditional statements for decision-making

Using loops and functions to simplify coding

© 2025 World Wide Technology, Inc. All rights reserved. 32

ADNOC Accelerator Programme

Artificial Intelligence

COHORT 2

© 2025 World Wide Technology, Inc. All rights reserved.

Python Libraries

© 2025 World Wide Technology, Inc. All rights reserved. 33

Python Libraries

LEARNING OBJECTIVES

1

2

3

Install Python Libraries

Utilise Pandas for data analysis

Perform data visualisation with Matplotlib

© 2025 World Wide Technology, Inc. All rights reserved. 34

A Python library helps perform tasks without starting from scratch

Imagine you had to

build an oil refinery

Would you prefer to manufacture

each part yourself (from pipelines

to turbines) or use pre-built

components wherever possible?

That’s right! Use pre-built components.

That would save time and money.

© 2025 World Wide Technology, Inc. All rights reserved. 35

A Python library helps perform tasks without starting from scratch

Libraries serve as

toolboxes or

ingredient kits for

your task

Imagine you had to

build an oil refinery

Would you prefer to manufacture

each part yourself (from pipelines

to turbines) or use pre-built

components wherever possible?

A python library contains pre-built

functions that perform complicated tasks

for you by utilising existing solutions

© 2025 World Wide Technology, Inc. All rights reserved. 36

Python libraries can be managed through a simple process

Install Verify Check Upgrade List

pip (Python Package Installer) is the standard tool for installing libraries in Python

© 2025 World Wide Technology, Inc. All rights reserved. 37

Python libraries can be managed through a simple process

Install Verify Check Upgrade List

After installation, verify if the libraries are installed correctly

© 2025 World Wide Technology, Inc. All rights reserved. 38

Python libraries can be managed through a simple process

Install Verify Check Upgrade List

Check the installed version of the library

© 2025 World Wide Technology, Inc. All rights reserved. 39

Python libraries can be managed through a simple process

Install Verify Check Upgrade List

Upgrade to the latest version

© 2025 World Wide Technology, Inc. All rights reserved. 40

Python libraries can be managed through a simple process

Install Verify Check Upgrade List

List all installed libraries

© 2025 World Wide Technology, Inc. All rights reserved. 41

Pandas and Matplotlib are some commonly used Python libraries

© 2025 World Wide Technology, Inc. All rights reserved. 42

Pandas is a powerful library used to manipulate and analyse data

Pandas helps you work with structured data, similarly to

excel or google sheets. It provides easy-to-use data

structures and functions to work efficiently with structured

data types such as tables, time-series, and matrices.

Tables Time series Matrices

© 2025 World Wide Technology, Inc. All rights reserved. 43

The power of Pandas lies in handling large datasets extremely fast

Managing multiple excels can get cumbersome and forget

handling heavy files at anything faster than a snail’s pace

Pandas solves these problems

by processing data quickly,

efficiently, and at scale, all the

while keeping it error free

Excel for Data Scientists

Command to

import pandas

© 2025 World Wide Technology, Inc. All rights reserved. 44

Master these Pandas skills to take control of your data

Reading data with

dataframes

Exploring data

Renaming and dropping

rows / columns

Handling

missing values

Slicing data

Grouping and

aggregating

© 2025 World Wide Technology, Inc. All rights reserved. 45

Snapshot of the dataset used: oil_gas_production

Column 1: Date

States production date (from 01-01-2023 to 14-05-2024)

Column 2: Oil_Production

Measures daily oil output (in barrels per day)

Column 3: Gas_Production

Measures daily gas output (in cubic feet per day)

Column 4: Water_Cut

Measures proportion of water mixed in with oil (in%)

Column 5: Field

Oil field where production happened

(Asab, Buhasa, Habshan or Ruwais)

500 rows!

5 Columns

© 2025 World Wide Technology, Inc. All rights reserved. 46

import pandas as pd

Data is stored in dataframes which are very similar to excel tables

Command Output

Similarly, you can read

excel, json files, etc

The df variable translates

the data from your file to a

Pandas dataframe

Reading from a CSV file

df = pd.read_csv("oil_gas_production.csv")

Display the first few rows

print(df.head())

© 2025 World Wide Technology, Inc. All rights reserved. 47

You can use different commands to explore the data

Command Output

Display first 5 rows

Display last 5 rows

© 2025 World Wide Technology, Inc. All rights reserved. 48

You can use different commands to explore the data

Command Output

Give a quick

numerical summary

© 2025 World Wide Technology, Inc. All rights reserved. 49

You can use different commands to explore the data

Command Output

Display unique values in a column

Count occurrences of each value

© 2025 World Wide Technology, Inc. All rights reserved. 50

Pandas allows you to rename and drop rows or columns

Original Table Command

© 2025 World Wide Technology, Inc. All rights reserved. 51

Pandas allows you to rename and drop rows or columns

Original Table CommandModified Table

© 2025 World Wide Technology, Inc. All rights reserved. 52

Check for missing values

Handling missing values becomes much easier in Pandas

Command Output

© 2025 World Wide Technology, Inc. All rights reserved. 53

Other actions you can do with missing values

Fill missing values with

column mean

Drop rows with missing values df.dropna (inplace=True)

Fill missing values with 0 df.fillna (0, inplace=True)

df[“Oil_Output”].fillna(df[“Oil_Output”].mean(),

inplace=True)

Action Command

© 2025 World Wide Technology, Inc. All rights reserved. 54

Slicing allows you to extract specific rows, columns, or both

You may not need to work on

all the data in your dataframe.

By slicing the data, you can

access the particular subsets

you want to work on.

Original Table Slicing

© 2025 World Wide Technology, Inc. All rights reserved. 55

Slicing allows you to extract specific rows, columns, or both

Command Output

Select specific columns

© 2025 World Wide Technology, Inc. All rights reserved. 56

Slicing allows you to extract specific rows, columns, or both

Command Output

Select rows based on conditions

© 2025 World Wide Technology, Inc. All rights reserved. 57

Slicing allows you to extract specific rows, columns, or both

Command

.loc[] (Label-based selection) extracts data using column names or row labels

Output

© 2025 World Wide Technology, Inc. All rights reserved. 58

Slicing allows you to extract specific rows, columns, or both

.iloc[] (Index-based selection) extracts data by row and column positions (integer index)

The df includes an

integer identifier

for each row which

forms the index

© 2025 World Wide Technology, Inc. All rights reserved. 59

Slicing allows you to extract specific rows, columns, or both

Command

.iloc[] (Index-based selection) extracts data by row and column positions (integer index)

You can select

specific rows by index

Output

© 2025 World Wide Technology, Inc. All rights reserved. 60

Slicing allows you to extract specific rows, columns, or both

Command

.iloc[] (Index-based selection) extracts data by row and column positions (integer index)

Output

You can specify which

columns to extract

from the index

© 2025 World Wide Technology, Inc. All rights reserved. 61

You can group and aggregate data to filter and analyse categories

Command

Group by field and calculate

total output per field

Output

© 2025 World Wide Technology, Inc. All rights reserved. 62

You can group and aggregate data to filter and analyse categories

Command

Count the number of days

the field was operational

Output

© 2025 World Wide Technology, Inc. All rights reserved. 63

You can group and aggregate data to filter and analyse categories

Command

Aggregate multiple statistics

(sum, mean, max) for oil output

Output

© 2025 World Wide Technology, Inc. All rights reserved. 64

You can group and aggregate data to filter and analyse categories

Command

Group by field and filter those with

total oil production above 50,000

Output

© 2025 World Wide Technology, Inc. All rights reserved. 65

Real world application: Finding anomalies in sensor data using

time series analysis

Command Output

Sensor[“Anomaly”] = sensor[‘value’]

 .map(lambda x: True if x > 60 or x < 40 else False)

Predicting Energy

Demand

Monitoring Operational

Performance

Possible use cases

© 2025 World Wide Technology, Inc. All rights reserved. 66

Data visualisation makes it easy to explore complex data

Instead of presenting raw data as a table, you can present data graphically using charts,

graphs, and plots to help interpret trends, patterns, and relationships within datasets

But why do you need data visualisation when you can work with raw data?

© 2025 World Wide Technology, Inc. All rights reserved. 67

Data visualisation makes it easy to explore complex data

Consider a case where average production of two oil wells is the same.

Does that mean they are equal in every aspect?

© 2025 World Wide Technology, Inc. All rights reserved. 68

Data visualisation makes it easy to explore complex data

Graphically, we can see that Well A is performing consistently but Well B

has an outlier on one day which will prompt us to dig into the issue

© 2025 World Wide Technology, Inc. All rights reserved. 69

Which is the third largest segment?

vs.

Different types of data benefit from different ways of visualisation

© 2025 World Wide Technology, Inc. All rights reserved. 70

It’s difficult to answer from a pie chart,

while it’s evident from a ar chart arranged in order

vs.

Different types of data benefit from different ways of visualisation

© 2025 World Wide Technology, Inc. All rights reserved. 71

Matplotlib is a Python library used for data visualisation

Matplotlib is a Python library used for creating static,

animated, and interactive visualizations. It is widely

used for scientific computing, engineering, and

business applications.

Command to import

matplotlib

© 2025 World Wide Technology, Inc. All rights reserved. 72

Powerful graphs you can create with Matplotlib

Line Plots Scatter PlotsBar Charts

© 2025 World Wide Technology, Inc. All rights reserved. 73

Line Plots are useful to show trends over time

This line plot shows clearly the trend of oil production over time,

making it easy to observe patterns, fluctuations, and overall direction

Command Output

Use plt.plot

import matplotlib.pyplot as plt

Data

years = [2019, 2020, 2021, 2022, 2023, 2024]

production = [530, 560, 520, 550, 580, 590] # In million barrels

Creating the plot

plt.plot(years, production, marker='o', linestyle='-',

colour='b', label="Oil Production")

Display Legend

plt.legend()

Labels and title

plt.xlabel("Year")

plt.ylabel("Oil Production (Million Barrels)")

plt.title("Oil Production Over Years")

Show plot

plt.show()

© 2025 World Wide Technology, Inc. All rights reserved. 74

Bar Plots make comparisons fun and easy

This bar plot shows oil production across different regions,

highlighting differences in production levels at a glance

Command Output

Use plt.bar

import matplotlib.pyplot as plt

Data

regions = ["Asab", "Buhasa", "Ruwais", "Habshan"]

production = [400, 600, 500, 700] # Production in million barrels

Creating the plot

plt.bar(regions, production, colour=['red', 'blue', 'green',

'purple'])

Labels and title

plt.xlabel("Region")

plt.ylabel("Production (Million Barrels)")

plt.title("Oil Production by Region")

Show plot

plt.show()

© 2025 World Wide Technology, Inc. All rights reserved. 75

Scatter plots highlight relationships between data

This scatter plot illustrates the inverse correlation between oil production and prices,

showing that as production increases, oil prices tend to decrease

Command Output

Use plt.scatter

import matplotlib.pyplot as plt

Data

prices = [66, 65, 60, 55, 53, 50] # Price per barrel

production = [500, 520, 550, 580, 600, 620] # Million barrels

Creating the plot

plt.scatter(prices, production, colour='red', marker='o')

Labels and title

plt.xlabel("Oil Price per Barrel ($)")

plt.ylabel("Oil Production (Million Barrels)")

plt.title("Oil Price vs. Production")

Show plot

plt.show()

© 2025 World Wide Technology, Inc. All rights reserved. 76

Which would you use to compare expenses per region?

A. Scatter Plots

B. Line Plots

C. Bar Chart

 d ce

© 2025 World Wide Technology, Inc. All rights reserved. 77

Which would you use to compare expenses per region?

A. Scatter Plots

B. Line Plots

C. Bar Chart

 d ce

© 2025 World Wide Technology, Inc. All rights reserved. 78

Python Libraries

In this session, we covered:

How to install a Python Library

Using Pandas to explore datasets

Using Matplotlib to visualise data

	Default Section
	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	Untitled Section
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

