World Wide
Technology

ADNOC Accelerator Programme

Artificial Intelligence

Introduction to Python
for Data Science

© 2025 World Wide Technology, Inc. All rights reserved.

Introduction to Python

LEARNING OBJECTIVES)

o Understand the fundamentals of programming
e Grasp basic principles of Python

e Leverage conditional statements, loops and functions

© 2025 World Wide Technology, Inc. All rights reserved.

Programming allows you to talk to your computer

You can instruct your computer to execute certain

Simple as addition

input("Type a number:

y = input("Type another number ")
sum = int(x) + int(y)

print("The sum is: ", sum)...

Complex as website design

IDOCTYPE html>
<html lang="en">
<head>
<title>Page Title</title>
<meta charset="UTF-8">
<meta name="viewport" content="width=device-width,
initial-scale=1">
<style>
body {
font-family: Arial, Helvetica, sans-serif;

}

© 2025 World Wide Technology, Inc. All rights reserved.

Some common
programming languages

Python was designed to be both practical and powerful P

The name Python
doesn’t come from the
snake. It comes from
a comedy group
called Monty Python's
Flying Circus.

Guido Van Rossum released Python in 1991 with
the vision of creating a language that was easy to
read, easy to write, and powerful enough to be
used in real world application

© 2025 World Wide Technology, Inc. All rights reserved.

Python is go-to language across industries
like oil & gas, finance, and healthcare
due to its:

L. Ease of use & productivity

L. Powerful data science & Al support

L. Seamless integration

L Scalability

L Automation & scripting

L Cross-platform & open-source

Python is simple, readable, and versatile

Python requires fewer lines of code than other languages,
meaning faster and more efficient development

(public class Main {

() public static void main(String[] args) {
— . . e
— System.out.println("Hello, World!");

}
}

|

a print("Hello, World!")

© 2025 World Wide Technology, Inc. All rights reserved.

Simple Readable Syntax eliminates need for special characters

No need to worry about semi columns or braces

Code Blocks are defined by indentation Dynamic Typing means you don’t have

to specify data types explicitly

X = 180 # Integer
if True: y = 3.14 # Float
print("This is indented correctly") name = "0il & Gas Industry” # String
7} is_running = True # Boolean

Indentation shows the hierarchy of
the code, that is, this line belongs to
the block of code

© 2025 World Wide Technology, Inc. All rights reserved.

Variables store value and track data that can change over time

A variable in Python functions much
like those in math — it holds values mmm Numbers: Integers, real numbers, and so on

that can change and be used in
calculations [1 L2, 3, 4, 5]

Variables can be of many types Strings: Ordered sequence of characters

“Python is easy”

What do variables do
YN foryou?

s | |st: Ordered collection of objects

Keep track of the changing data in list is - [2, 3, 5, 12, 30, 40, 90]
your programme

N /

© 2025 World Wide Technology, Inc. All rights reserved. 6 =&

Basics of Python: Data Structures

Lists are used for storing ordered sequences of data

A I

List of daily oil production (in barrels)
oil_preduction = [3560, 1268, 3080, w1se, 360

Displaying Original List
prnt('Original Lise:®, oil production) original List: (3560, 4208, 3900, 4160, 3800)
First day's production: 3560

Accessing elements to show order is preserved Last day's production: 3808

print(*First day's production:*, oil_productionl])

Accessing first elensnt

print(*Last day's production:*, oil_production(-11)

Accessing last elenent

Mutability of lists allows you to modify elements even after printing

Butable: Lists allow modification of elements
o1 _production(2] = 166 # Changing value for Day 3

Updated List: [35e@, 4208, d4eee, 4180, 3300]
Display updated List
prant(Updated List:*, oil_productien)

[— s &
Dictionaries store unique key values of data
ey - T

3D ooy vem g 41 peodceion oo e enen oy
well_production = {

et a0

e &

Mol A': {I0SLY: 4200, *Gas*: 26060), § Overurites previous ell A"
¥ {'Well A": {"OAl': 4200, "Gas': 26000}, 'Well B': {'0il': 3200, 'Gas': 27000}}
) iy TR 7 e et o L et
RESNE("Dictionsry with Unique Heys:*, WeLl_production)

Python dictionaries allow fast lookup just like a real dictionary
0il Production for Well B: 3200 barrels

Fast Lookup: Retrieving oil procuction for “Mell 6 using OCL) conplexity
print("0il Production for Well B:*, well_production[*well B']["0il"],
“oarcets®)
DR v— 0 Y&

© 2025 World Wide Technology, Inc. All rights reserved.

Tuples are essentially fixed lists which cannot be modified

A I

Tuple storing wellhead location (Latitude, Longitude, Depth)
wellhead_location = (21.1667, 5U.3667, 3808) & Abu Dhabi coordinates +
depth in neters

original Tuple: (24.4667, 54.3667, 3000)
Wellhead Latitude: 24.4667

Ordered: Tuples maintain the sequence in which elements are defined
print('0riginal Tuple:", wellhesd Location)

Accessing elements to show order
print (¢*Mellhead Latitude: {wellhead_Location[s]}*)

Immutability of tuples does not allow modification

try:
wellhead_lacation(2] = 350 & Attempting to change depth
except TypeError as e:

P ey))T T i S Error: "tuple' object does not support item assignment

S — o
Sets are unordered mutable collections of data
Command ﬁ Output
Defining a set of well nanes
el names = {oueld Ae, Svell B¢, el C5, el v}
Set of Well Names: {'Well A", 'Well C°, ‘Well B, "Well D'}
Princing the set aultisle tises to sho unsrdered nasure
prine(iset of ell Nases:*, well rames)
Only unique values get stored within a set
Defining a set with duplicate values
CHLLel4s = {"Eiela Xt Fiela Yo, “Pield 25, PField ¥, "Fied v
Unique Oil Fields: {'Field Y*, 'Field X', 'Field Z'}

Praneing whe set
prine(hiniue 011 Fields:*, oll_fields)

W

0 2025 Workt e Tachnciogy, Ine. A rghs ressrves

Lists are used for storing ordered sequences of data

Command

List of daily oil production (in barrels)
0il_production = [3500, 4200, 3900, 4100, 3800]

Displaying Original List
print("Original List:", oil_production)

Accessing elements to show order is preserved
print("First day's production:", oil_production[0])
Accessing first element

print("Last day's production:", oil_production[-1])
Accessing last element

Output

Original List: [356@, 4200, 3900, 4100, 3800]
First day's production: 3500
Last day's production: 38600

Mutability of lists allows you to modify elements even after printing

Mutable: Lists allow modification of elements
0oil_production[2] = 4600 # Changing value for Day 3

Display updated list
print("Updated List:", oil_production)

© 2025 World Wide Technology, Inc. All rights reserved.

Updated List: [3500, 4200, 4000, 4108, 3800]

Tuples are essentially fixed lists which cannot be modified

D < D

Tuple storing wellhead location (Latitude, Longitude, Depth)
wellhead_location = (24.U4667, 54.3667, 3000) # Abu Dhabi coordinates +
depth in meters

Ordered: Tuples maintain the sequence in which elements are defined Original Tuple: (24.4667, 54.3667, 3000)
print("Original Tuple:", wellhead_location) Wellhead Latitude: 24.4667

Accessing elements to show order
print(f"Wellhead Latitude: {wellhead_location[0]}")

Immutability of tuples does not allow modification

try:
wellhead_location[2] = 3500 # Attempting to change depth
except TypeError as e:

, . L . Error: 'tuple' object does not support item assignment
print("Error:", e) # This will confirm immutability

© 2025 World Wide Technology, Inc. All rights reserved. 9
T U L

Dictionaries store unique key values of data

D < D

Dictionary storing oil production with duplicate keys

well_production = {
"Well A": {"0il": 4OOO, "Gas": 25000}%,
"Well B": {"Oil": 3200, "Gas": 27000},
"Well A": {"Oil": 4200, "Gas": 26000}, # Overwrites previous "Well A"

} {'Well A': {'0il': 420©, 'Gas': 26000}, 'Well B': {'0il': 320@, 'Gas': 27000}}

Display dictionary to show unique keys behaviour
print("Dictionary with Unique Keys:", well_production)

Python dictionaries allow fast lookup just like a real dictionary

0il Production for Well B: 3200 barrels
Fast Lookup: Retrieving oil production for "Well B" using 0(1) complexity
print("0il Production for Well B:", well_production["Well B"]["0il"],
"barrels")

© 2025 World Wide Technology, Inc. All rights reserved. 10
T U L

Sets are unordered mutable collections of data

D < D

Defining a set of well names
well_names = {"Well A", "Well B", "Well C", "well D"}

Set of Well Names: {'Well A', 'Well C', 'Well B', 'Well D'}

Printing the set multiple times to show unordered nature
print("Set of Well Names:", well_names)

Only unique values get stored within a set

Defining a set with duplicate values
oil_fields = {"Field X", "Field Y", "Field z", "Field X", "Field Y"}

Unique 0il Fields: {'Field Y', 'Field X', 'Field Z'}
Printing the set
print("Unique 0il Fields:", oil_fields)

v’
© 2025 World Wide Technology, Inc. All rights reserved. 11 &
T U L

Which of these do not allow modification?

A. Lists
B. Tuples
C. Sets

© 2025 World Wide Technology, Inc. All rights reserved.

Which of these do not allow modification?

A. Lists
B. Tuples
C. Sets

© 2025 World Wide Technology, Inc. All rights reserved.

Decision making can also be simplified through Python

Let’s say you want to keep track oil production in
different oil rigs

g WAVAVAWA wA -
: TAVAVAVAvSa~~
3

How would you do that?

V \d
© 2025 World Wide Technology, Inc. All rights reserved. 14 &
T U L

Decision making can also be simplified through Python

Let’s say you want to keep track oil production in
different oil rigs

g WAVAVAWA wA -
: TAVAVAVAvSa~~
3

One way to do this is through conditional statements

v’
© 2025 World Wide Technology, Inc. All rights reserved. 15 &
T U L

Basics of Python: Conditional Statements

Conditional statements allow decision-making by controlling the order of following commands

If statements are used for basic one-way decision making

Checks if statement is true
If true — code runs
' If false — code doesn't run

D -

0il_production = 3500 # Barrels per day

if oil_production « 4eee
print("alert: 0il production is below the threshold!™)

Alert: 0il production is below the threshold!

If-elif-else statements check for multiple conditions
If true — one block runs
If false — checks elif condition
' Both if and elif false — runs
else condition
.)
. Design a system to track each well’'s performance
46 productdan > senn: production = 4ses & Barrels per day
printCoigh-perforatng wel13
Uit production » 3068
print(“Hoderate-perforning well®) Moderate-performing well
!lszptjn!('Lw-p!rlmm)ng well - Needs attention!®)

If-else statements allow two-way decision making

If true — first block runs

' If false — second block runs
® Command P utput
6 -ttt sas_Leak_detected = True

print(*Warning: Gas Leak detected! Initiste encrgency shutdown.")

else:
print(*systen is stable. Mo gas Leak detected ") Warning: Gas leak detected! Initiate emergency shutdown.

© 2025 Wk Wide Tachnology. nc. A righs reserved.

© 2025 World Wide Technology, Inc. All rights reserved.

Nested if statements check condition inside another condition

' Outer if true— Inner if runs

Track if a rig is operational and if operational, is it safe

i# is_operational s_operational = True
P safety_checks_passed = Falss
print("Rig is operational and safe.")
else Rig is operational, but safety checks failed!
print("Rig is operational, but safety checks
Failed!™)

alse.
print('Rig is not operational.")

02025 Workt i

gy, Ine A g

16

If statements are used for basic one-way decision making

Checks if statement is true
? If true — code runs

If false — code doesn’t run

Ry -

oil_production = 3500 # Barrels per day

if 0il production < 4000:
print("Alert: 0il production is below the threshold!")

Alert: 0il production is below the threshold!

v’
© 2025 World Wide Technology, Inc. All rights reserved. 17 &
T U L

If statements are used for basic one-way decision making

Checks if statement is true
? If true — code runs

If false — code doesn’t run

* Create an alert for when oil production falls below 4000 barrels

oil_production = 3500 # Barrels per day

if 0il production < 4000:
print("Alert: 0il production is below the threshold!")

Alert: 0il production is below the threshold!

v’
© 2025 World Wide Technology, Inc. All rights reserved. 18 &
T U L

If-else statements allow two-way decision making

If true — first block runs
If false — second block runs

Ry -

gas_leak_detected = True

7

if gas_leak_detected:
print("Warning: Gas leak detected! Initiate emergency shutdown.")

else:
print("System is stable. No gas leak detected.") Warning: Gas leak detected! Initiate emergency shutdown.

v’
© 2025 World Wide Technology, Inc. All rights reserved. 19 &
T U L

If-else statements allow two-way decision making

If true — first block runs
If false — second block runs

Send a warning if gas leak is detected

if gas_leak_detected: gas_leak_detected = True

print("Warning: Gas leak detected! Initiate emergency shutdown.")

else:
print("System is stable. No gas leak detected.") Warning: Gas leak detected! Initiate emergency shutdown.

v’
© 2025 World Wide Technology, Inc. All rights reserved. 20 &
T U L

If-elif-else statements check for multiple conditions

If true — one block runs
If false — checks elif condition
Both if and elif false — runs
else condition

Ry -

if production > 5000: production = 4500 # Barrels per day
print("High-performing well")

7

elif production > 3000:
print("Moderate—performing well") Moder\-ate_per-FD rﬁming well

else:
print("Low-performing well - Needs attention!")

v’
© 2025 World Wide Technology, Inc. All rights reserved. 21 &
T U L

If-elif-else statements check for multiple conditions

If true — one block runs
If false — checks elif condition
Both if and elif false — runs
else condition

Design a system to track each well’s performance

if production > 5000: production = 4500 # Barrels per day
print("High-performing well")

elif production > 3000:
print("Moderate—performing well") Moder\-ate_per-FD rﬁming well

else:
print("Low-performing well - Needs attention!")

v’
© 2025 World Wide Technology, Inc. All rights reserved. 22 &
T U L

Nested if statements check condition inside another condition

? Quter if true— Inner if runs

Command

if is_operational: is_operational = True

if safety_checks_passed: safety_checks_passed = False

print("Rig is operational and safe.")

else: Rig is operational, but safety checks failed!
print("Rig is operational, but safety checks
failed!")

else:
print("Rig is not operational.")

v’
© 2025 World Wide Technology, Inc. All rights reserved. 23 &
T U L

Nested if statements check condition inside another condition

Outer if true— Inner if runs

Track if a rig is operational and if operational, is it safe

if is_operational: is_operational = True

if safety_checks_passed: safety_checks_passed = False

print("Rig is operational and safe.")

else: Rig is operational, but safety checks failed!
print("Rig is operational, but safety checks
failed!")

else:
print("Rig is not operational.")

V \d
© 2025 World Wide Technology, Inc. All rights reserved. 24 &
T U L

Loops make your code shorter, smarter, and faster

Loops automate repetition so you don’t have to write the same code multiple times

Before

Daily production data for multiple wells
wells = {"A": 1lee0, "B": 1200, "C": 1100, "D":
950}

Calculating production after a week (7 days)
well A weekly = wells["A"] * 7

well B_weekly = wells["B"] * 7
well C_weekly = wells["C"] * 7
well D weekly = wells["D"] * 7

print("Weekly Production:")

print("Well A:", well A weekly, "barrels")
print("Well B:", well B weekly, "barrels")
print("Well C:", well C weekly, "barrels")
print("Well D:", well_D_weekly, "barrels")

Weekly Production:

Well A: 7080 barrels
Well B: 8400 barrels
Well C: 7700 barrels

v’
© 2025 World Wide Technology, Inc. All rights reserved. Well D: 6656 barrels 25 &

Loops make your code shorter, smarter, and faster

Loops automate repetition so you don’t have to write the same code multiple times

for well, daily production in wells.items():
weekly production = daily production * 7
print(f"Well {well}: {weekly production} barrels")

Well A: 78€© barrels
Well B: 8480 barrels
Well C: 7708 barrels
Well D: 6650 barrels

© 2025 World Wide Technology, Inc. All rights reserved.

Different loops are used based on iterations and actions

For loops repeat a sequence While loops keep repeating as

a fixed number of times long as a condition is true

O

Continue statements skip
current iteration but continue
the loop

Break statements are used to

exit a loop completely

v’
© 2025 World Wide Technology, Inc. All rights reserved. 27 &
T U L

Functions make it easier to do tasks repeatedly

When you want to do some task repeatedly in Python, you can create a function that can
complete the task without being given instructions again and again

Before

Daily production and operational hours for multiple wells
wells = {

"A": {"production”: 1000, "hours": 20},

"B": {"production": 1200, "hours": 12},

"C": {"production": 1100, "hours": 40},
}

Efficiency = 0il Production / Operational Hours

eff A = wells["A"]["production”] / wells["A"]["hours"]
eff B = wells["B"]["production"] / wells["B"]["hours"]
eff C = wells["C"]["production”] / wells["C"]["hours"]

print("Production Efficiency:")

print(f"Well A: {eff A} barrels/hour")
print(f"Well B: {eff_B} barrels/hour")
print(f"Well C: {eff_C} barrels/hour")

Production Efficiency:
Well A: 5@.@ barrels/hour
Well B: 1€0.@ barrels/hour

Well C: 27.5 barrels/hour V&'

© 2025 World Wide Technology, Inc. All rights reserved. 28

Functions make it easier to do tasks repeatedly

When you want to do some task repeatedly in Python, you can create a function that can
complete the task without being given instructions again and again

After

Function to calculate production efficiency

def calculate_efficiency(production, hours):
return production / hours

for well, data in wells.items():
efficiency = calculate_efficiency(data["production"], data["hours"])
print(f"Well {well}: {efficiency:.2f} barrels/hour")

Well A: 50.@@ barrels/hour
Well B: 10©.80 barrels/hour
Well C: 27.58 barrels/hour

v’
© 2025 World Wide Technology, Inc. All rights reserved. 29 &
T U L

Functions can be defined using keywords

A function must be defined Functions take inputs known as
by using the def keyword —l parameters (hours, flow rate)

def estimate production(hours=24, flow rate=288):

return hours * flow rate

print(f"Estimated Production: {estimate production()}} barrels™)

print(f"Half-Day Production: {estimate production(12)} barrels™)

T

return keyword is used to
get the results

To run a function, call it using its name
followed by ()

V'
© 2025 World Wide Technology, Inc. All rights reserved. 30 &
T U L

Basics of Python

In this session, we covered:
Understanding fundamentals of programming
Learning about variables and data structures in Python

Using conditional statements for decision-making

CLLL

Using loops and functions to simplify coding

© 2025 World Wide Technology, Inc. All rights reserved.

L
Reca p

World Wide
Technology

ADNOC Accelerator Programme

Artificial Intelligence

Python Libraries

© 2025 World Wide Technology, Inc. All rights reserved.

Python Libraries

LEARNING OBJECTIVES)

o Install Python Libraries
e Utilise Pandas for data analysis

e Perform data visualisation with Matplotlib

© 2025 World Wide Technology, Inc. All rights reserved.

A Python library helps perform tasks without starting from scratch

Imagine you had to
build an oil refinery

§ WAVAVAWAwA -
H TAVAVAVAvS~~

That'’s right! Use pre-built components.
That would save time and money.

Would you prefer to manufacture
each part yourself (from pipelines

to turbines) or use pre-built
components wherever possible?

© 2025 World Wide Technology, Inc. All rights reserved.

A Python library helps perform tasks without starting from scratch

Libraries serve as

?,(‘ toolboxes or
- A Imagine you had to ingredient kits for
§§ .| build an oil refinery your task

Would you prefer to manufacture i T _ ou
each part yourself (from pipelines python library contains pre-pullt

to turbines) or use pre-built functions that perform complicated tasks
components wherever possible? for you by utilising existing solutions

v’
© 2025 World Wide Technology, Inc. All rights reserved. 35 &

Python libraries can be managed through a simple process

Install

pip (Python Package Installer) is the standard tool for installing libraries in Python

pip install <library_name>

pip install pandas import pandas as pd

v’
© 2025 World Wide Technology, Inc. All rights reserved. 36 &
T U L

Python libraries can be managed through a simple process

Install

After installation, verify if the libraries are installed correctly

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

import seaborn as sns
print("Libraries installed successfully!"™)

57 WK

© 2025 World Wide Technology, Inc. All rights reserved.
T U L

Python libraries can be managed through a simple process

Install

Check the installed version of the library

pip show numpy

v’
© 2025 World Wide Technology, Inc. All rights reserved. 38 &
T U L

Python libraries can be managed through a simple process

Install

Upgrade to the latest version

pip install --upgrade numpy

v’
© 2025 World Wide Technology, Inc. All rights reserved. 39 &
T U L

Python libraries can be managed through a simple process

Install

List all installed libraries

pip list

V \d
© 2025 World Wide Technology, Inc. All rights reserved. 40 &
T U L

Pandas and Matplotlib are some commonly used Python libraries

A
O PyTorch
Pandas r ﬂNumPy yltorc
Bl plotly matptstiib
theanO 1F TensorFlow

Id Keras @ python

Natural Language Analyses
with NLTK

© 2025 World Wide Technology, Inc. All rights reserved.

Pandas is a powerful library used to manipulate and analyse data

[Pandas

Incident Title Date

1 eri
22 2461462 |Steam leak. 05.01.2024 ; 1-Notable ; 1-Notabl:
53 | 2461497 {Steam leak. 05.01.2024 ; 1-Notable ; 1-Notabl
24 2461503 :Steam leak. 05.01.2024 : 1-Notable ; 1-Notabl:
25 2462554 :44-1\V2126 B/P I/V minor gland leak. : 06.01.2024 : 1-Notable: 1-Notabl

Gas leak from plug of tube bundle
- 2463477 393 E101 (Gas Gooler) 06.01.2024 ! 1-Notable ! 1-Notabl;
2463515 :ACID LEAKS 06.01.2024 : 1-Notable : 1-Notabl;
27

Tables

© 2025 World Wide Technology, Inc. All rights reserved.

A

Pandas helps you work with structured data, similarly to

excel or google sheets. It provides easy-to-use data

structures and functions to work efficiently with structured

data types such as tables, time-series, and matrices.

Passengers

600

500+

4001

300+

200

100+

Airline Passengers

1950 1952 1954 1956 1958 1960
Date

Ly N f—

o WO Ln

-2

3

1 4 5]

Time series

Matrices

2 WK

The power of Pandas lies in handling large datasets extremely fast

Managing multiple excels can get cumbersome and forget

handling heavy files at anything faster than a snail’s pace Excel for Data Scientists

Pandas solves these problems

‘ by processing data quickly,
Funstional Location | Inspection | Loss of Primary Contameant | Work | Reck Orders | Potential Ruocss . .
— O P L pou— efficiently, and at scale, all the
120345 Separator | Signs of internal | Internal corrosion Corrosion Rust
Injuries . . .
00389 Centritugal Misalignment | Misaligement Whlle keeplng It error free
pump Change Request ID Type Status
00251 Storage Dentsonshell Inspect damage 00456 Compressor oheri Downgraded Situation Pending
tank 00389 | Update alarm set Downgraded Situation Complete import pandas as pd
; ; 00251 Replace PSV on Downgraded Situation Open
00144 eraht IMlnogleatks Investigate leaks .p . . g. : p # Reading from a CSV file
exchanger Investigate 00144 | Pipeline rerouting Operationa Closed R e
Incident Incidentlioy Actu?l Poten.tial Recommendation Hedaline S PAsTs Eoo el e crre
Number Severity | Severity Work Order Priority = Equip.ID Type print(df.head())
120345 Production manifold 06/14/2023 High Closed Callbrate pressure 101567 ~ A-26U | INSPECTION >. v 01s
118902 Flare line 05/09/2023 Minor Moderate Inspect PSV forde 100934 H-467 INSPECTION Date 0il_Production Gas_Production Water_Cut Field
116457 Turbine 03/22/2023 Serious Closed Install new filter = 095343 M-320 = MAINTENAINCE ® 01-91-2023 1360 49298 ©.573@58 Ruwais
. Replace control val 099522 C-1004 INSPECTION 1 e2-e1-2823 4272 24683 ©.286655 Buhasa
114036 Crude oll leak 01/30/2023 Warning Closed P 5 93-81-20823 3592 16564 ©.235372 Buhasa
3 ©4-91-20823 966 43982 ©.422000 Buhasa
Recommendation Description Work Order Priority Equip.ID Work Ce Type 4 ©5-81-2823 4926 44299 ©.304367 Asab
Calibrate pressure gauge LOKE 101567 2 A-26U PMO1 INSPECTION
Inspect PSV for defects Checks 100934 3 H-467 PMO1 INSPECTION
Install a new filter FUEL 095343 1 M-320 FABS MAINTENANCE i _Command to
Replace control valve CLAIM 089522 1 C-1004 CFD INSPECTION —@— import pandas
/7 N
s import pandas as pd
43 a

©2025-Wortt-Witde 1ECTnNoIogy, 1TC. All Iiglllb rescrved.

Master these Pandas skills to take control of your data

Reading data with Handling
dataframes missing values

Exploring data Slicing data

Renaming and dropping Grouping and
rows / columns aggregating

© 2025 World Wide Technology, Inc. All rights reserved.

Snapshot of the dataset used: oil _gas production

A B T D E
1 Date Oil_Production | Gas_Production| Water_Cut Field
2 | 01-01-2023 1360 49298 0.573|Ruwais
3 | 02-01-2023 4272 24683 0.287|Buhasa
4 | 03-01-2023 3592 10504 0.235|Buhasa
5 | 04-01-2023 966 43982 0.422|Buhasa
6 | 05-01-2023 4926 44299 0.304|Asab
7 | 06-01-2023 3944 38016 0.113|Habshan
& | 07-01-2023 3671 33960 0.178|Habshan
g | 08-01-2023 3419 43591 0.458|Buhasa
10| 09-01-2023 630 27312 0.429|Habshan
11| 10-01-2023 2185 47797 0.114|Habshan
12| 11-01-2023 1269 12105 0.211|Buhasa
13 12-01-2023 2891 46395 0.216|Buhasa
14| 13-01-2023 2933 32700 0.436|Ruwais
15| 14-01-2023 16564 44620 0.110{Habshan
16| 15-01-2023 3885 47678 0.152|Asab
17| 16-01-2023 4617 30559 0.500{Buhasa
18| 17-01-2023 3404 37509 0.189|Ruwais
19| 18-01-2023 37860 0.426|Asab
20| 19-01-2023 1582 21003 0.219|Habshan
21| 20-01-2023 3058 31732 0.150|Ruwais
22| 21-01-2023 2547 35826 0.222|Buhasa
23| 22-01-2023 3247 40354 0.461|Asab
24 | 23-01-2023 1475 23843 0.528|Buhasa
25| 24-01-2023 2306 16190 0.515|Habshan
26| 25-01-2023 689 27640 0.299|Asab
27 | 26-01-2023 3234 48413 0.434|Habshan
28| 27-01-2023 3905 13330 0.202|Habshan
29| 28-01-2023 2399 29087 0.247|Ruwais
30| 29-01-2023 1767 34504 0.548|Buhasa
31| 30-01-2023 2028 17114 0.107|Asab
32| 31-01-2023 3702 23323 0.143|Habshan
33| 01-02-2023 4056 44121 0.204|Habshan
34 | 02-02-2023 4390 20975 0.113|Asab
35| 03-02-2023 1146 21023 0.191|Habshan
36| 04-02-2023 3388 31447 0.392|Ruwais
37| 05-02-2023 2935 34933 0.311|Ruwais
38| 06-02-2023 1100 33959 0.246|Ruwais
39| 07-02-2023 2863 10667 0.509|Ruwais
40| 08-02-2023 2961 39703 0.271|Habshan
41| 09-02-2023 741 19337 0.230|Asab
42| 10-02-2023 2541 46487 0.290|Asab

an A44_nn npnn

EEET

ERYET

£ nnc

PR

© 2025 World Wide Technology, Inc. All rights reserved.

Column 1: Date
States production date (from 01-01-2023 to 14-05-2024)

Column 2: Oil_Production
Measures daily oil output (in barrels per day)

Column 3: Gas_Production
Measures daily gas output (in cubic feet per day)

Column 4: Water_Cut
Measures proportion of water mixed in with oil (in%)

Column 5: Field
Oil field where production happened
(Asab, Buhasa, Habshan or Ruwais)

45

Data is stored in dataframes which are very similar to excel tables

A

Command

Output

The df variable translates
the data from your file to a
Pandas dataframe

Date 0il_Production Gas_Production Water_Cut Field

© ©1-91-2023 1369 49298 ©.573858 Ruwais
1 e2-91-2023 4272 24683 ©.286655 Buhasa

import pandas as pd 2 ©3-01-2023 3592 le5e4 ©.235372 Buhasa
3 ©4-01-2023 966 43982 ©.422880 Buhasa

Reading from a CSV file

. . N 4 ©5-81-2023 4926 44299 ©.384367 Asab

df = pd.read_csv("oil _gas_production.csv")

Display the first few rows

print(dfJhead())

Similarly, you can read
excel, json files, etc

© 2025 World Wide Technology, Inc. All rights reserved. 46

You can use different commands to explore the data
=

Command

Output

DISplay fIrSt 5 roOws Date 0il_Production Gas_Production Water_Cut Field
© 8l-e1-2823 1368 49298 ©.573058 Ruwais
1 ©2-901-2023 4272 24683 ©.286655 Buhasa
print(df.head()) 2 ©3-01-2023 3592 10504 ©.235372 Buhasa
3 ©4-901-2023 966 43982 ©.42200@ Buhasa
+ 0.0s 4 ©5-081-2023 4926 44299 ©.304367 Asab
D|Sp|ay IaSt 5 rows Date O0il_Production Gas_Production Water_Cut Field
495 10-085-2824 1743 36737 ©.466557 Ruwais
. . 496 11-0©5-2024 4209 21485 ©.165784 Buhasa
print(df.tail()) 497 12-85-2024 1581 48565 ©.457912 Buhasa
\,/ D U 498 13-85-2824 955 35522 8.554516 Habshan
S 499 14-95-2024 1394 22342 ©.189842 Asab
Vv
© 2025 World Wide Technology, Inc. All rights reserved. 47 &

You can use different commands to explore the data

A

Command Output

0il_Production Gas_Production Water_Cut

_ _ count 500 .000000 500.000000 500.0800000
Give a quick mean 2805.660000 29609.624000 ©.351864
: td 1261.356268 11928.592366 0.148604
numerical summary st
min 504 .000000 10609 .000008 6.103193
25% 1666 .750000 19298.750000 8.216319
. . 58% 2930.000000 29126.000000 ©.361152
print(df.describe()) 75% 3830.756000 39213.500800 0.480836
v 00s max 4999 . 0000008 49964 .000000 ©.598967
V’
© 2025 World Wide Technology, Inc. All rights reserved. 48 &

You can use different commands to explore the data

A
) come

Display unique values in a column

print(df["Field"].unique()) ["Ruwais' 'Buhasa’ 'Asab' 'Habshan']
v/ 0.1s
Field
Count occurrences of each value Habshan 137
Buhasa 138
print(df["Field"].value_counts()) Ruwais 117
Asab 116
v/ 0.0s

Name: count, dtype: inté4

© 2025 World Wide Technology, Inc. All rights reserved. 49

Pandas allows you to rename and drop rows or columns

Command

Original Table

Date 0il_Production Gas_Production Water_Cut Field

Drop a column

& ©l1-91-2823 1360 49298 ©.573058 Ruwais dF.d 1 Wat cut” inpl -
1 82-1-2023 4272 24683 ©.286655 Buhasa -drop(columns=["Water_Cut"], inplace=True)
2 @3-91-2023 3592 10504 ©.235372 Buhasa v 00s
3 ©84-01-2023 966 43882 ©.422000 Buhasa
4 ©85-01-2023 4926 44299 ©.304367 Asab
Rename a column
df.rename(columns={"0il_Production”: "0Oil_Output"}, inplace=True)
v 0.0s
Drop rows with specific conditions
df = df[df["0il_Output"] > 3@ee] # Keep only wells producing more than 30€e bpd
v 0.0s
V'
© 2025 World Wide Technology, Inc. All rights reserved. 50 &

Pandas allows you to rename and drop rows or columns

Original Table Modified Table

Date 0il_Production Gas_Production Water_Cut Field

A7 Date # oil_output # Gas_Production A7 Field

& ©l1-91-2823 1360 49298 ©.573058 Ruwais 1 02-01-2023 4272 24683 Buhasa
1 ©2-01-2023 4272 24683 ©.286655 Buhasa 2 03-01-2023 3592 10504 Buhasa
2 ©3-91-2023 3592 18504 ©.235372 Buhasa 4 | 05-01-2028 4926 44299 | Asab

5 06-01-2023 3944 38016 Habshan
3 ©84-01-2023 966 43882 ©.422000 Buhasa

6 07-01-2023 3671 33960 Habshan
4 ©85-01-2023 4926 44299 ©.304367 Asab

V’
© 2025 World Wide Technology, Inc. All rights reserved. 51 &

Handling missing values becomes much easier in Pandas

A
) come

. : Date e
Check for missing values 01l Production a
Gas_Production 4
print(df.isnull().sum()) Water_Cut 3
v 00s Field 2
dtype: inte4
© 2025 World Wide Technology, Inc. All rights reserved. 52 V&’

N\ 7/

—
—
-—
—

Action

Drop rows with missing values

Fill missing values with 0

Fill missing values with
column mean

© 2025 World Wide Technology, Inc. All rights reserved.

-@- Other actions you can do with missing values

Command

df.dropna (inplace=True)

df.fillna (0, inplace=True)

df[“0il_Output”].fillna(df[«“0il_Output”].mean(),

inplace=True)

Slicing allows you to extract specific rows, columns, or both

D

Slicing

Original Table

You may not need to work on

Date 0il_Production Gas_Production Water_Cut Fiei!.d a” the data |n your datafl‘ame
@ ©1-01-20823 1360 49298 ©.573058 Ruwals L.
1 ©82-01-2023 4272 24683 ©.286655 Buhasa By S|IC|ng the data, you Ccan
2 ©3-91-2023 3592 10504 ©.235372 Buhasa .
3 ©4-01-2023 9266 43982 ©.42200@ Buhasa acCess the partICU|ar SUbsetS
4 ©85-01-2023 4926 44299 ©.304367 Asab you want to work on.
© 2025 World Wide Technology, Inc. All rights reserved. 54 V&’

Slicing allows you to extract specific rows, columns, or both

Select specific columns

A

¥

Field 0il Output

e Ruwais 1360.0
)) 1 Buhasa 4272.0
df_subset = df[["Field", "0il Output"]] 2 Buhasa 3592.0
print(df_subset) 3 Buhasa 966.0
4 Asab 4926.0
© 2025 World Wide Technology, Inc. All rights reserved. 55 V&’

Slicing allows you to extract specific rows, columns, or both

Select rows based on conditions

A

Command

Date O0il_Output Gas_Production Water_Cut Field

1 82-01-20823 4272.0 24683.8 8.286655 Buhasa
high_output_wells = d-F[d-F["Oil_Dutput"] > 3888] 2 83-81-2823 3592.0 le5e4.8 8.235372 Buhasa
pr‘int(high_output_wells) 4 85-81-2823 4926.0 44299.0 8.384367 Asab

5 86-081-2823 3844.0 38016.0 ©.112693 Habshan

6 87-01-2023 3671.9© 33960.0 ©.178876 Habshan

© 2025 World Wide Technology, Inc. All rights reserved. 56 V&’

Slicing allows you to extract specific rows, columns, or both

Jloc[] (Label-based selection) extracts data using column names or row labels

A

¥

Command

Field O0il_ Output

1 Buhasa 4272.9©
subset_loc = df.loc[df["Field"] == "Buhasa", ["Field", "0il Output"]] 2 Buhasa 3592.0
print(subset_loc) 3 Buhasa 966.0
7 Buhasa 3419.9
10 Buhasa 1269.8

© 2025 World Wide Technology, Inc. All rights reserved. 57 V&’

Slicing allows you to extract specific rows, columns, or both

iloc[] (Index-based selection) extracts data by row and column positions (integer index)

/ | \ Date 0il_Production Gas_Production Water_Cut Field
| . The df includes an o lo1-01-2023 1360 49298 ©.573058 Ruwais
SN i id tifi 1 [p2-01-2023 4272 24683 ©.286655 Buhasa
= = Integer iaentirier » 2 [p3-01-2023 3592 10564 ©.235372 Buhasa
7 N -
= for each row which 3 jp4-01-2023 966 43982 ©.422000 Buhasa
= ! 4 95-01-2023 4926 44299 ©.304367 Asab
_ . forms the index)

© 2025 World Wide Technology, Inc. All rights reserved.

Slicing allows you to extract specific rows, columns, or both

iloc[] (Index-based selection) extracts data by row and column positions (integer index)

A

¥

Command

You can select Date 0il_Output Gas_Production Water_Cut Field
specific rows by index ® ©1-01-20823 1360.0 49298.0 ©.573058 Ruwais
1 ©2-01-2023 4272.0 24683.0 ©.286655 Buhasa
- 2 ©93-91-2023 3592.9 10504.0 ©.235372 Buhasa
df_head = df.iloc[:5] 3 94-91-2023 966.0 43982.0 ©.422000 Buhasa
print(df_head) 4 ©5-91-2023 4926.0 44299.8 ©.304367 Asab
© 2025 World Wide Technology, Inc. All rights reserved. 59 V&’

Slicing allows you to extract specific rows, columns, or both

iloc[] (Index-based selection) extracts data by row and column positions (integer index)

A

¥

You can specify which

columns to extract 0il_Output Gas_Production

from the index 2 3592.0 18504.9

3 966.0 43982.0

subset_iloc = df.iloc[2:5, 1:3] # Rows 2 to 4, Columns 1 to 2 4 4926.0 44299.80

print(subset_iloc)

v’
© 2025 World Wide Technology, Inc. All rights reserved. 60 &

You can group and aggregate data to filter and analyse categories

A
D |

Group by field and calculate Field
total output per field Asab 362942.6
Buhasa 355313.0
field production = df.groupby("Field")["0il Output"].sum() Habshan 387073.6
. . . Ruwais 325225.0
print(field_production))
Name: 01l Output, dtype: floatesd

© 2025 World Wide Technology, Inc. All rights reserved. 61

You can group and aggregate data to filter and analyse categories

A
) come

Count the number of days Field

the field was operational Asab 113

Buhasa 128

Habshan 135

well count = df.groupby("Field")["Date"].count() Ruwais 116
print(well count) Name: Date, dtype: inté64

© 2025 World Wide Technology, Inc. All rights reserved.

You can group and aggregate data to filter and analyse categories
=

Command r Output
Aggregate multiple statistics 01l _Output
. sum mean max
(sum, mean, max) for oil output :
Field
Asab 387935.8 2725.088486 499%5.0

agg stats = df.groupby("Field").agg({

oo TTEeR Buhasa 355313.8 2775.882812 4996.0
O0il_Output": ["sum", "mean", "max"],

Habshan 389554.0 2885.585185 4988.90

) Ruwais 328160.8 2828.965517 4996.0

print(agg_stats)

© 2025 World Wide Technology, Inc. All rights reserved. 63 =&
T U L

You can group and aggregate data to filter and analyse categories

A

Command Output

Date O0il_Output Gas_Production Field

Group by field and filter those with

e ©1-81-2823 1368.0 49298.8 Ruwais
total O|I productlon above 50’000 1 ©2-01-2023 4272.0 24683.@ Buhasa
2 ©3-01-20823 3592.@ le5e4.0@ Buhasa
3 e4-01-20823 966.0 43982.8 Buhasa
4 ©5-01-2823 4926.80 44299 .8 Asab
high_producing_fields = df.groupby("Field").filter(lambda x: x["Oil_Output"].sum() > 50608)) e e e :
print(high_producing fields) 495 18-85-2824 1743.9 36737.8 Ruwais
496 11-85-2024 42089.0 21485.0@ Buhasa
497 12-85-2024 1581.@ 48565.8@ Buhasa
498 13-85-2824 955.0 35522.8 Habshan
499 14-85-2824 13584.0@ 22342 .0 Asab

[492 rows x 4 columns]

V \d
© 2025 World Wide Technology, Inc. All rights reserved. 64 &
T U L

Real world application: Finding anomalies in sensor data using

A

time series analysis

Command Output

Sensor Data Time Series Sensor Data with Anomalies Highlighted

sor Value

80 % Anomaly
701

v 60

=

S sot \/_/\/_/\J\/\l L\/V\,./\AV\ W\/\’\-/\/\I \/\/\z\/\l M,_\[\

S

I %

a 40

=

(7]

v 30
20
10}

O SV Q W Q 9% O 2 O
N Q ~) o N
& N v N ,\,,04’ S o N S
Timestamp Q N N N N Q N Q Q
Timestamp

Possible use cases
Sensor[“Anomaly”] = sensor[‘value’]

.map(lambda x: True if x > 60 or x < 40 else False)

Predicting Energy Monitoring Operational
Demand Performance

© 2025 World Wide Technology, Inc. All rights reserved.

Data visualisation makes it easy to explore complex data

Instead of presenting raw data as a table, you can present data graphically using charts,

graphs, and plots to help interpret trends, patterns, and relationships within datasets

But why do you need data visualisation when you can work with raw data?

v’
© 2025 World Wide Technology, Inc. All rights reserved. 66 &
T U L

Data visualisation makes it easy to explore complex data

Consider a case where average production of two oil wells is the same.

Does that mean they are equal in every aspect?

Comparing Oil Production of Two Wells with Same Average

A B C 200 4 —®— Well A (Consistent)
1 Day Well A Well B —8— \Well B (Has Outlier)
2 1 100 85 180
3 2 102 S0
= 3 98 88 3 160 1
5 4 101 92 <
6 5 99 87 8 140 4
7 6 100 86 g
8 7 101 89 53 120
9 8 99 91
10 9 100 S0 100
11 10 100 202
12 |Average 100 100 80 .

2 4 6 8 10
Day
%’
© 2025 World Wide Technology, Inc. All rights reserved. 67 &

Data visualisation makes it easy to explore complex data

Graphically, we can see that Well A is performing consistently but Well B

has an outlier on one day which will prompt us to dig into the issue

Comparing Oil Production of Two Wells with Same Average

A B C 200 4 —®— Well A (Consistent)
1 Day Well A Well B —8— \Well B (Has Outlier)
2 1 100 85 180
3 2 102 S0
= 3 98 88 3 160 1
5 4 101 92 <
6 5 99 87 8 140 4
7 6 100 86 g
8 7 101 89 53 120
9 8 99 91
10 9 100 S0 100
11 10 100 202
12 |Average 100 100 80 .

2 4 6 8 10
Day
%’
© 2025 World Wide Technology, Inc. All rights reserved. 68 &

Different types of data benefit from different ways of visualisation

Which is the third largest segment?

A D G

v \d
© 2025 World Wide Technology, Inc. All rights reserved. 69 &

Different types of data benefit from different ways of visualisation

It's difficult to answer from a pie chart,

while it's evident from a bar chart arranged in order

A D G

V’
© 2025 World Wide Technology, Inc. All rights reserved. 70 &

Matplotlib is a Python library used for data visualisation

Matplotlib is a Python library used for creating static,

e animated, and interactive visualizations. It is widely
matp t ' used for scientific computing, engineering, and

business applications.

_\@’. Command to import
a5 matplotlib

—3
—3
-

import matplotlib.pyplot as plt

© 2025 World Wide Technology, Inc. All rights reserved.

71

Powerful graphs you can create with Matplotlib

Line Plots

© 2025 World Wide Technology, Inc. All rights reserved.

Bar Charts

Scatter Plots

Line Plots are useful to show trends over time

\J

Use plt.plot

Oil Production Over Years

import matplotlib. lot as plt
mp P Pyp P 590 1 —e— Oil Production
Data
years = [2019, 2020, 2021, 2022, 2023, 2024] 580 1
production = [530, 560, 520, 550, 580, 590] # In million barrels :%

= 570 A
Creating the plot g
plt.plot(years, production, marker='o', linestyle='-"', § 560 -
colour="b', label="0il Production") =

c
Labels and title % 350 1
plt.xlabel("Year") §
plt.ylabel("0il Production (Million Barrels)") & 540 7
plt.title("0il Production Over Years") S

530 -

Display Legend
plt.legend() 520 4
Show plot 2019 2020 2021 2022 2023 2024
plt.show() Year

This line plot shows clearly the trend of oil production over time,
making it easy to observe patterns, fluctuations, and overall direction

© 2025 World Wide Technology, Inc. All rights reserved. 73

Bar Plots make comparisons fun and easy

Output

Use plt bal’ Oil Production by Region
700
import matplotlib.pyplot as plt
Data 6001
regions = ["Asab", "Buhasa", "Ruwais", "Habshan"])
production = [400, 600, 500, 700] # Production in million barrels % 500 1
m
Creating the plot é 400 4
plt.bar(regions, production, colour=['red', 'blue', 'green’, =
‘purple’]) é 300
3
Labels and title 8 200
plt.xlabel("Region") .
plt.ylabel("Production (Million Barrels)")
plt.title("0il Production by Region") 100
0 o
Show plot Asab Buhasa Ruwais Habshan
plt.show() Region

This bar plot shows oil production across different regions,
highlighting differences in production levels at a glance

v’
© 2025 World Wide Technology, Inc. All rights reserved. 74 &
T U L

Scatter plots highlight relationships between data

Command g Output

Qil Price vs. Production

Use plt.scatter

6201 @

import matplotlib.pyplot as plt

600 - [
Data

prices = [66, 65, 60, 55, 53, 50] # Price per barrel

production = [500, 520, 550, 580, 600, 620] # Million barrels 580 1 *

Creating the plot 560 -

plt.scatter(prices, production, colour='red', marker='o")
540 A
Labels and title

plt.xlabel("0il Price per Barrel ($)")
plt.ylabel("0il Production (Million Barrels)") 520 1 L
plt.title("0il Price vs. Production")

Qil Production (Million Barrels)

500 - L

Show plot

T T T T T T T T T
50 52 54 56 58 60 62 64 66
plt.show()

Oil Price per Barrel ($)

This scatter plot illustrates the inverse correlation between oil production and prices,
showing that as production increases, oil prices tend to decrease

v’
© 2025 World Wide Technology, Inc. All rights reserved. 75 &
T U L

Which would you use to compare expenses per region?

A. Scatter Plots
B. Line Plots

C. Bar Chart

© 2025 World Wide Technology, Inc. All rights reserved.

Which would you use to compare expenses per region?

A. Scatter Plots
B. Line Plots

C. Bar Chart

© 2025 World Wide Technology, Inc. All rights reserved.

Python Libraries

In this session, we covered.:
/ How to install a Python Library
/ Using Pandas to explore datasets

/ Using Matplotlib to visualise data

© 2025 World Wide Technology, Inc. All rights reserved.

	Default Section
	Slide 0
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44

	Untitled Section
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78

