Where to Run AI?

Factors to Consider

Derrick Monahan Principal Solutions Architect AI & High-Performance Architecture

Jason Campagna Senior Director - Al Practice Strategy & GTM

Our Collective Point of View is Based on Real Al Work

200+ Customer AI Engagements

More than a technology challenge, it's a business opportunity

Process to delivering an effective AI Strategy

Technology Stack Layers For Al

Your AI Journey Simplified: Accelerate, Build and Scale with Purpose-Driven Impact

Customer Challenges: Building AI Solutions

It could take organizations anywhere between 7 - 12 months to operationalize AI/ML from concept to deployment.

			ini	
Optionality	Vendor Lock-In	Scalability	High Cost	Operational Complexity
Need choices, NVIDIA, AMD, Intel Accelerators, etc. GPUs	Need Flexibility, Vendor lock-in is a major concern for	Need Scale, AI workloads can be highly demanding. Businesses	Need formalized TCO, Containing costs of infrastructure	Need Operationally Consistent Capabilities,
(Graphics Processing Units), TPUs (Tensor Processing Units), ASICs (Application-Specific Integrated	businesses adopting AI, as it can limit flexibility and increase costs in the long run.	need compute solutions that can scale seamlessly to handle increasing data volumes and	is imperative. The high cost of AI compute resources, including specialized hardware and	Deploying and managing AI infrastructure can be complex, requiring specialized expertise
Circuits), CPUs		model complexity.	software, can be a barrier to entry for many organizations.	and tools

Al Adoption: Matching Your Deployment Strategy to Your Needs

or regulated data, on-premises deployment offers a high level of control and security. Compliance requirements also a factor

or expensive to move. AI workloads are often deployed close to where the data

resides. 'Data Gravity' is a powerful force

power and cooling to support highperformance computing, with space considerations crucial for accommodating specialized hw and efficient airflow.

deployment of AI capabilities, as prebuilt solutions are readily available. Building can take longer due to development and customization.

issues, critical for real-time applications (e.g., industrial automation, highfrequency trading).

Cost

in deployment decisions

INTERNAL

Visualizing the Cost of GenAl

Hybrid Al **Driven by AI Workload Placement**

Architectural Evaluation Process Ability to Develop and Deploy Al anywhere

Data Locality

Data Gravity challenges are further compounded by AI. Location of data varies as data processing can occur at the edge, model training, or being used for production applications

Data Sovereignty

Adhering to regulatory requirements governing data storage and processing.

Hybrid AI Strategies

Combined approaches optimizing cost, performance, and security to leverage best-ofbreed AI solutions,

Real-Time Performance

Supporting real-time analytics and insights that rely on sensor-generated data or that must react in real-time

Decision Tree WWT Example - Where to Run AI

Simplifies a complex landscape:

- AI can be overwhelming
- Decision trees make it easier to navigate the options

Exploring AI Approaches (HPA Workshop)

• The decision tree captures critical input using a weighted scoring model to explore best AI architecture approaches

Providing Recommendations:

 Tailored solutions: By following the decision tree, the customer arrives at a specific AI solution or a narrowed-down set of options that best fit their needs

Four key building blocks for High Performance Architecture (HPA)

E Compute

HPC / supercomputing Accelerated computing Heterogenous computing Emergent computing Quantum computing

Storage

Parallel file system storage Streaming storage Data Platforms Synthetic data Computational storage Emergent storage

Connects users and infrastructure

Secure, smart, fast fabrics

SmartNICs and DPUs

Computational networking

Photonics (SOC, switches, backplanes)

Orchestration & AI Workflow

Al and Data Science Tools and Frameworks

Cloud-Native Management and Orchestration

Infrastructure Optimization

Cluster Management

Platform and MLOps

AI Workflow Orchestration & Infrastructure Management

Intersects with multiple AI disciplines

Foundational Components Build Approach

Architecture Choice

- Requires upfront investment in GPUs, CPUs, memory, storage, and networking.
- Well-established Reference Architectures
- Tailor the hardware configuration to the specific requirements of your AI workloads

Customized Software Stack

00

- Operating system, data management platforms, machine learning frameworks, and MLOps tools
- Provide greater flexibility and control over your AI development and deployment process

Expert AI engineers & Data scientists

- Strong programming and DevOps skills
- Deep understanding of hardware and software infrastructure.
- Optimize and Monitor infrastructure health and troubleshoot issues.

Key Components of a Hybrid Approach

Optimal results obtained with a balance of speed, cost, and control

Foundational Concepts

Hybrid Approach

Mix of Infrastructure

- Workload placement and dynamic resource allocation
- Well established platforms in the public cloud
- Private cloud a must with connectivity, security, and access controls established

Systems of Systems

8

- APIs and cloud-native container platforms integration
- Modular architecture with standard interfaces/protocols
- Execution of multiple AI models to optimize performance + accuracy

Data Governance and Integration

- Data sovereignty opportunities with an established governance framework
- Must maintain a framework to collect, process, and manage data
- Continuous monitoring and evaluation

Key Takeaways of a Hybrid Approach

Innovation and agility

Accelerate Al Outcomes: Our Practical Approach

Simplifying the AI journey: Accelerate, build and scale with purpose-driven impact

Al Studio

Accelerate strategic alignment and business value

Al Foundry

Build AI applications rapidly with powerful models

AI Factory

Scale AI infrastructure for speed and efficiency

Rapidly achieve business impact with the right AI experiences

Business ROI Validation Use Case Validation Strategy & Roadmap Center of Excellence Workload Sizing Build vs. Buy

Rapid Prototyping Data Readiness Al Security High-Performance Architecture Agentic Platforms

SaaS Solutions

Automation

Optimized Deployment

Al Operations

Thank You!

Questions

