### Ethernet for Al Networking: How Does RoCEv2 Stack Up Against InfiniBand?

Eric Fairfield, Technical Solution Architect – High Performance Networking





#### **Eric Fairfield**

Technical Solution Architect

High-Performance Networking

- Contact Info:
- Email: eric.fairfield@wwt.com
- Linkedin: <u>https://www.linkedin.com</u> <u>/in/eric-fairfield</u>
- 608-628-6445



### Ethernet vs InfiniBand: The Battle Royale

In this corner: born in 1999 and hailing from the mad labs of Silicon Valley, weighing in with an MTU of 4096 bytes, the Lord of Latency ... InfiniBand!

| Ĵ |
|---|
|---|



And in this corner: coming to us from the hallowed labs of Xerox PARC, with a heavyweight MTU of 9216 bytes, the Swiss Army Knife of transport protocols, the god of "Good Enough"... Ethernet!





# Why Does it Matter?



# **Compute Clustering**

- GPUs communicate inside servers via specialized interconnects such as NVLink
  - NVLink is very fast but mostly nonroutable
  - NVLink 5.0 can connect up to 576 GPUs
- GPUs typically communicate between servers in clusters ranging from 16 to 100,000 nodes/GPUs
- Cluster interconnects can be over Ethernet or InfiniBand
- Regardless of the transport, RDMA is leveraged to maximize throughput between GPUs







# Misconception: InfiniBand is Faster

#### WRONG!

- Both protocols are at parity in terms of ASIC latency and bandwidth
- In a direct kernel-to-kernel race, vanilla IP (over IB or Ethernet) takes about 50 microseconds regardless of transport
- The "go-fast juice" is RDMA, which is supported by both.
  - Drops latencies by 90-95%

### **RDMA ACCELERATED**





# Misconception: InfiniBand is More Reliable

#### **WRONG AGAIN!**

- Both protocols leverage different methods to achieve the same results
- InfiniBand uses scheduled fabric
  - Link-level flow control is used to avoid drops
- Ethernet uses a variety of tools to ensure reliable delivery
  - Current
    - PFC/ECN to manage congestion
      - NOTE: This was sufficient for Meta to train LLAMA3 on a 24,000 GPU cluster
    - Sender/Receiver collaboration and mid-fabric adaptive routing (eg, SpectrumX)
  - Upcoming (UET)
    - Multipath Packet Spraying
    - Receiver-based token for congestion control
    - Packet trimming as an alternative to Go\_Back\_N





# How Do They Compare on Paper?

|                 | ETHERNET                                                                                                                                                                                                                  | INFINIBAND                                                                                                      |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--|
| Max Bandwidth   | 800 gbps                                                                                                                                                                                                                  | 800 gbps                                                                                                        |  |
| MTU             | 9216 bytes                                                                                                                                                                                                                | 4096 bytes                                                                                                      |  |
| Layer 3 Support | Yes                                                                                                                                                                                                                       | No                                                                                                              |  |
| Delivery        | Best Effort, enhanced to lossless                                                                                                                                                                                         | Scheduled Fabric                                                                                                |  |
| Load Balancing  | Hash Values                                                                                                                                                                                                               | Deterministic                                                                                                   |  |
| RDMA Support    | RoCEv2                                                                                                                                                                                                                    | Native                                                                                                          |  |
| Enhancements    | <ul> <li>Dynamic Load Balancing</li> <li>Weighted ECMP</li> <li>VOQ</li> <li>Disaggregated Scheduled<br/>Fabric (DSF)</li> <li>Adaptive Routing</li> <li>EtherLink</li> <li>Performance Isolation</li> <li>DDP</li> </ul> | <ul> <li>Adaptive Routing</li> <li>SHARP</li> </ul>                                                             |  |
| Pros            | <ul> <li>Handles multi-workload<br/>fabrics (i.e., several<br/>different AI's with varying<br/>requirements)</li> <li>Easily adapted skillset for<br/>existing network<br/>engineers</li> </ul>                           | <ul> <li>Simple to install</li> <li>Self-optimizing</li> </ul>                                                  |  |
| Cons            | At present, requires a few     QoS modifications to     optimize performance                                                                                                                                              | <ul> <li>Rare skillset</li> <li>Operationally difficult to<br/>support when something<br/>goes wrong</li> </ul> |  |



# How Do They Compare In Our AIPG Lab?

- Stripped down to the fundamentals
- Equipment:
  - (2) NVIDIA DGX H100 (16 GPU total)
  - (1) NVIDIA Quantum2 InfiniBand switch
  - (1) Cisco 9332D-GX2B Ethernet switch
- Eliminate every variable not related to network
  - Same GPU's, optics, cables leveraged for Ethernet and IB
  - Disable NVLink on DGX to force traffic through network
  - Enable basic PFC/ECN on Ethernet (for parity with native IB functions)
- Run MLCommons benchmarks on each topology and switch to gauge Generative and Inference performance





### **Atomic Test - Results**

| BENCHMARK               | MODEL           | ETHERNET | INFINIBAND |
|-------------------------|-----------------|----------|------------|
| <b>MLPerf Training</b>  | BERT-Large      | 3:01:06  | 3:02:31    |
|                         |                 |          |            |
| <b>MLPerf Inference</b> | LLAMA2-70B-99.9 | 52.362   | 52.003     |

#### • Generative

- Performance delta between InfiniBand and Ethernet was statistically insignificant (less than 0.03%)
- Ethernet was faster than InfiniBand's best time in 3 out of 9 generative tests (although the margin was only by a few seconds)
- Variance between OEM's was approximately 1.5% (5 minutes over 3 hour benchmark)
- Inference
  - Ethernet averaged 1.0166% slower (approximately 0.359 seconds)



## How About Some More Testing?

| BENCHMARK              | MODEL      | ETHERNET FEATURES                  | DURATION |
|------------------------|------------|------------------------------------|----------|
| <b>MLPerf Training</b> | BERT-Large | ECMP Only, NVLink Off              | 3:01:33  |
|                        |            | ECMP/ECN/PFC On, NVLink Off        | 3:00:26  |
|                        |            | ECMP/ECN/PFC On, NVLink On         | 3:00:31  |
|                        |            | DLB Packet Spray/ECN/PFC/NVLink On | 3:00:36  |

- Spine/Leaf instead of a single switch
- Same exact tests of MLPerf Training
- Run three tests of each scenario (Average shown)
  - ECMP Only with NVLink Off
  - ECMP/ECN/PFC with Nvlink Off and On
  - ECN/PFC with packet spraying and NVLink On



# What Should I Be Considering For Ethernet?

- For Ethernet to be a viable GPU cluster interconnect, three main questions need to be answered:
  - To Schedule or not to Schedule?
  - Packet spray or flowlet (ie, "perfect load balancing")?
    - Spraying means out of order delivery (roughly 25% of the time)
    - Regular Ethernet hashing is based on standard 5 tuples and can lead to major oversubscription.
    - Flowlets increase entropy by incorporating time between identical flows to mark them for separate egress interfaces
  - Reorder in network or NIC?
    - Some vendors incorporate endpoint intelligence (ie, DPUs) into switch/smartnic solutions that coordinate traffic patterns through the fabric and reorder at the receiving point on the server
    - Others will reorder at the last hop in the network prior to delivering traffic to the endpoint





# What QoS Mechanism Should I Use?

- DCQCN (Data Center Quantized Congestion Notification)
  - Congestion control mechanism designed for performance-sensitive workloads (eg, RDMA)
- PFC (Priority-Based Flow Control)
  - Link-level flow control mechanism that pauses traffic at the port and priority level when congestion is detected
- ECN (Explicit Congestion Notification)
  - End-to-end congestion control mechanism that marks packets to signal congestion to the sender, allowing it to reduce its transmission rate.





## Where is Ethernet Going?

Existing/Ur

- Traditional Ethernet has challenges
  - Inefficient Load-Balancing Ο
  - Engineering efforts Ο associated with reliable delivery
  - PFC/ECN/DCQCN can be Ο difficult to scale, tune, and adapt
- UltraEthernet (under • development) addresses these
  - Major updates to Physical, 0 DataLink, and Transport Layers of TCP stack
  - Scales to 1,000,000+ Ο endpoints
  - **Overhaul of RDMA** Ο

| ing/Unchanged<br>Mandatory | APPLICATION                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Optional                   | API<br>(*CCL, MPI, OpenSH MEM)<br>Libfa bric UEC extensions                                                                                                             | UEC extensions for Libfabric 2.0     Replaces IB VERBs                                                                                                                                                                                                                                                                                                                                  |
|                            | TRANSPORT         Message Semantics         Packet Delivery         Congestion Mgmt         Reliability Modes                                                           | Sel ective Retransmit (replaces go-back-n)     Advanced congestion control (spraying, AR)     Granular/flexible packet ordering inside a single flow                                                                                                                                                                                                                                    |
|                            | IP LAYER                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | Ethernet Link Layer           LLD P Negotiation         Packet Rate<br>Improvement           LLC or MAC Client         Intervel Retry           MAC Control         MAC | <ul> <li>LLR: Replaces PFC as "lossless transmission" mechanism with frame-based ACK/NACK of sequence numbers. Sub stantially faster (and more granular) retransmit at Link Layer, reduced taillatency</li> <li>PRI: Compressed IP/E themet headers to optimize small-packet mouse flow performance</li> <li>LLDP: Capabilities exchange and feature support for LLR and PRI</li> </ul> |
|                            | Ethernet PHY Layer                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                         |
|                            | FEC Statistics         UEC LL Support           UEC 100gbps/lane         UEC 200gbps/lane           PMA         PMID                                                    | Classic Ethernet Compatibility     FEC codeword metrics: UCR (uncorrectable codeword rate) and MTBPE (mean time between packet errors) – important for upper layer telemetry     Current specification to 800/1600 gbps                                                                                                                                                                 |

# Why Pick Ethernet Over InfiniBand?

- Question
  - If Ethernet and InfiniBand deliver statistically identical results, why choose one over the other?
- Answer
  - o <u>Operations</u>
    - InfiniBand is easy to setup and self-optimizing, but tricky to troubleshoot
  - o <u>Support</u>
    - IB expertise is a rare skillset
    - In comparison, a network team can be brought up to speed on RoCE in a matter of weeks
  - o Reusability
    - What's fast today becomes ho-hum tomorrow
    - 400gig Ethernet switches can be re-used for general datacenter use
    - 400gig InfiniBand is special-purpose



