Skip to content
WWT LogoWWT Logo Text
The ATC
Search...
Ctrl K
Top page results
See all search results
Featured Solutions
What's trending
Help Center
Log In
What we do
Our capabilities
AI & DataAutomationCloudConsulting & EngineeringData CenterDigitalSustainabilityImplementation ServicesLab HostingMobilityNetworkingSecurityStrategic ResourcingSupply Chain & Integration
Industries
EnergyFinancial ServicesGlobal Service ProviderHealthcareLife SciencesManufacturingPublic SectorRetailUtilities
Featured today
Learn from us
Hands on
AI Proving GroundCyber RangeLabs & Learning
Insights
ArticlesBlogCase StudiesPodcastsResearchWWT Presents
Come together
CommunitiesEvents
Featured learning path
Who we are
Our organization
About UsOur LeadershipLocationsSustainabilityNewsroom
Join the team
All CareersCareers in AmericaAsia Pacific CareersEMEA CareersInternship Program
WWT in the news
Our partners
Strategic partners
CiscoDell TechnologiesHewlett Packard EnterpriseNetAppF5IntelNVIDIAMicrosoftPalo Alto NetworksAWS
Partner spotlight
What we do
Our capabilities
AI & DataAutomationCloudConsulting & EngineeringData CenterDigitalSustainabilityImplementation ServicesLab HostingMobilityNetworkingSecurityStrategic ResourcingSupply Chain & Integration
Industries
EnergyFinancial ServicesGlobal Service ProviderHealthcareLife SciencesManufacturingPublic SectorRetailUtilities
Learn from us
Hands on
AI Proving GroundCyber RangeLabs & Learning
Insights
ArticlesBlogCase StudiesPodcastsResearchWWT Presents
Come together
CommunitiesEvents
Who we are
Our organization
About UsOur LeadershipLocationsSustainabilityNewsroom
Join the team
All CareersCareers in AmericaAsia Pacific CareersEMEA CareersInternship Program
Our partners
Strategic partners
CiscoDell TechnologiesHewlett Packard EnterpriseNetAppF5IntelNVIDIAMicrosoftPalo Alto NetworksAWS
The ATC
ResearchAI SolutionsApplied ResearchAI & Data
WWT Research • Applied Research Report
• January 11, 2024 • 15 minute read

Machine Learning Models for Route Consolidation

We develop a generalizable machine learning method for route consolidation. The developed method is compared against a more traditional ad-hoc method. The machine learning method uses a deep autoencoder, K-means clustering and Procrustes distance. The machine learning method is shown to produce similar results to the more traditional method with the advantage of using a more generalizable approach.

This report was originally published in April 2020

 

Abstract

Finding common routes from a large set of individual trips is a difficult problem due to the natural complexity involved with nontrivial trips. Much of the current research for route consolidation has relied on clustering- or distance-based methods, along with ad-hoc rules for combining routes. We compare a more traditional physical-based method that uses clustering, graph theory and ad-hoc rules with a machine-learning method. In particular, the machine-learning method uses an autoencoder to reduce the number of trips in the dataset and find common or standard routes. The routes identified using the autoencoder are then post-processed using K-means clustering and Procrustes distance. We apply both methods to a mine haul truck trip dataset and show how the machine-learning method can largely replicate the results produced by the physical modeling method, thus providing a more generalizable alternative for route consolidation. 

"WWT Research reports provide in-depth analysis of the latest technology and industry trends, solution comparisons and expert guidance for maturing your organization's capabilities. By logging in or creating a free account you’ll gain access to other reports as well as labs, events and other valuable content."

Thanks for reading. Want to continue?

Log in or create a free account to continue viewing Machine Learning Models for Route Consolidation and access other valuable content.

  • About
  • Careers
  • Locations
  • Help Center
  • Sustainability
  • Blog
  • News
  • Press Kit
  • Contact Us
© 2025 World Wide Technology. All Rights Reserved
  • Privacy Policy
  • Acceptable Use Policy
  • Information Security
  • Supplier Management
  • Quality
  • Cookies