Skip to content
WWT LogoWWT Logo Text
The ATC
Search...
Ctrl K
Top page results
See all search results
Featured Solutions
What's trending
Help Center
Log In
What we do
Our capabilities
AI & DataAutomationCloudConsulting & EngineeringData CenterDigitalSustainabilityImplementation ServicesLab HostingMobilityNetworkingSecurityStrategic ResourcingSupply Chain & Integration
Industries
EnergyFinancial ServicesGlobal Service ProviderHealthcareLife SciencesManufacturingPublic SectorRetailUtilities
Featured today
Learn from us
Hands on
AI Proving GroundCyber RangeLabs & Learning
Insights
ArticlesBlogCase StudiesPodcastsResearchWWT Presents
Come together
CommunitiesEvents
Featured learning path
Who we are
Our organization
About UsOur LeadershipLocationsSustainabilityNewsroom
Join the team
All CareersCareers in AmericaAsia Pacific CareersEMEA CareersInternship Program
WWT in the news
Our partners
Strategic partners
CiscoDell TechnologiesHewlett Packard EnterpriseNetAppF5IntelNVIDIAMicrosoftPalo Alto NetworksAWS
Partner spotlight
What we do
Our capabilities
AI & DataAutomationCloudConsulting & EngineeringData CenterDigitalSustainabilityImplementation ServicesLab HostingMobilityNetworkingSecurityStrategic ResourcingSupply Chain & Integration
Industries
EnergyFinancial ServicesGlobal Service ProviderHealthcareLife SciencesManufacturingPublic SectorRetailUtilities
Learn from us
Hands on
AI Proving GroundCyber RangeLabs & Learning
Insights
ArticlesBlogCase StudiesPodcastsResearchWWT Presents
Come together
CommunitiesEvents
Who we are
Our organization
About UsOur LeadershipLocationsSustainabilityNewsroom
Join the team
All CareersCareers in AmericaAsia Pacific CareersEMEA CareersInternship Program
Our partners
Strategic partners
CiscoDell TechnologiesHewlett Packard EnterpriseNetAppF5IntelNVIDIAMicrosoftPalo Alto NetworksAWS
The ATC
Computer VisionResearchAI SolutionsApplied ResearchData AnalyticsAI Proving GroundAI & Data
WWT Research • Applied Research Report
• January 11, 2024 • 14 minute read

Machine Learning for Shovel Tooth Failure Detection

The current computer vision-based methods for identifying broken teeth on mining shovels suffer from a prohibitively high false-positive rate (FPR) of 25%. In this white paper, you will learn how advanced technology can reduce the FPR to 5%. The paper also details a two-step process for capturing images as well as an algorithm to perform a binary classification for model development and testing.

This was originally published in September 2019

Abstract

Current computer vision-based methods for identifying broken teeth on mining shovels suffer from a prohibitively high false positive rate (FPR) of 25%. We describe a 2-stage methodology for the detection of broken teeth that reduces the FPR to 5%. First, we used a Haar wavelet feature cascade based on the Viola-Jones object detection framework to detect the row of shovel teeth from the input image. The second stage is a classification step that takes the detections from stage 1 as input and produces a binary score indicating whether the equipment is intact or damaged. We evaluated two methods for stage 2: 1) Dynamic Time Warping with k-Nearest Neighbors (DTW—k-NN) and 2) Convolutional Neural Network (CNN). The accuracies of the two methods on an out-of-sample image set were 96.3 and 95.5%, respectively.

"WWT Research reports provide in-depth analysis of the latest technology and industry trends, solution comparisons and expert guidance for maturing your organization's capabilities. By logging in or creating a free account you’ll gain access to other reports as well as labs, events and other valuable content."

Thanks for reading. Want to continue?

Log in or create a free account to continue viewing Machine Learning for Shovel Tooth Failure Detection and access other valuable content.

  • About
  • Careers
  • Locations
  • Help Center
  • Sustainability
  • Blog
  • News
  • Press Kit
  • Contact Us
© 2025 World Wide Technology. All Rights Reserved
  • Privacy Policy
  • Acceptable Use Policy
  • Information Security
  • Supplier Management
  • Quality
  • Cookies