Skip to content
WWT LogoWWT Logo Text (Dark)WWT Logo Text (Light)
The ATC
Ctrl K
Ctrl K
Log in
What we do
Our capabilities
AI & DataAutomationCloudConsulting & EngineeringData CenterDigitalImplementation ServicesIT Spend OptimizationLab HostingMobilityNetworkingSecurityStrategic ResourcingSupply Chain & Integration
Industries
EnergyFinancial ServicesGlobal Service ProviderHealthcareLife SciencesManufacturingPublic SectorRetailUtilities
Learn from us
Hands on
AI Proving GroundCyber RangeLabs & Learning
Insights
ArticlesBlogCase StudiesPodcastsResearchWWT Presents
Come together
CommunitiesEvents
Who we are
Our organization
About UsOur LeadershipLocationsSustainabilityNewsroom
Join the team
All CareersCareers in AmericaAsia Pacific CareersEMEA CareersInternship Program
Our partners
Strategic partners
CiscoDell TechnologiesHewlett Packard EnterpriseNetAppF5IntelNVIDIAMicrosoftPalo Alto NetworksAWS
What we do
Our capabilities
AI & DataAutomationCloudConsulting & EngineeringData CenterDigitalImplementation ServicesIT Spend OptimizationLab HostingMobilityNetworkingSecurityStrategic ResourcingSupply Chain & Integration
Industries
EnergyFinancial ServicesGlobal Service ProviderHealthcareLife SciencesManufacturingPublic SectorRetailUtilities
Learn from us
Hands on
AI Proving GroundCyber RangeLabs & Learning
Insights
ArticlesBlogCase StudiesPodcastsResearchWWT Presents
Come together
CommunitiesEvents
Who we are
Our organization
About UsOur LeadershipLocationsSustainabilityNewsroom
Join the team
All CareersCareers in AmericaAsia Pacific CareersEMEA CareersInternship Program
Our partners
Strategic partners
CiscoDell TechnologiesHewlett Packard EnterpriseNetAppF5IntelNVIDIAMicrosoftPalo Alto NetworksAWS
The ATC
ResearchApplied AIATCLife SciencesApplied ResearchHealthcareData AnalyticsAI & Data
WWT Research • Applied Research Report
• August 6, 2025 • 11 minute read

LLM-Powered Clinical Trial Matcher

This article showcases the power of LLMs and RAG to reduce manual effort and improve consistency in one of clinical research's most persistent bottlenecks: patient matching.

Executive summary

The recruitment of patients for eligible clinical trials accelerates the development of life-saving therapeutics. However, life science organizations and health systems often struggle to match patients to trials successfully, making recruitment itself a costly and resource-intensive process. When recruitment efforts are unsuccessful, development is delayed, expenses increase, and studies may ultimately fail.

The LLM-Powered Clinical Trial Matcher lab demonstrates a practical application of retrieval-augmented generation (RAG) using large language models (LLMs) to improve patient recruitment for clinical trials. This system showcases how RAG can be repurposed to interpret unstructured eligibility text and dynamically filter patient datasets based on those criteria. By automating eligibility translation and matching logic, the approach highlights how LLMs can reduce manual effort, improve consistency and support scalable clinical trial recruitment systems.

"WWT Research reports provide in-depth analysis of the latest technology and industry trends, solution comparisons and expert guidance for maturing your organization's capabilities. By logging in or creating a free account you’ll gain access to other reports as well as labs, events and other valuable content."

Thanks for reading. Want to continue?

Log in or create a free account to continue viewing LLM-Powered Clinical Trial Matcher and access other valuable content.

What's Next LLM Powered Clinical Trial Matcher
  • About
  • Careers
  • Locations
  • Help Center
  • Sustainability
  • Blog
  • News
  • Press Kit
  • Contact Us
© 2025 World Wide Technology. All Rights Reserved
  • Privacy Policy
  • Acceptable Use Policy
  • Information Security
  • Supplier Management
  • Quality
  • Accessibility
  • Cookies