?

What is 5G? How Is 5G Different From 4G?

Given 5G’s complex nature, it’s critical network operators to understand the definition and scope of 5G, the role it will play in the future economy, the challenges in deploying such technology and how to best leverage it.

April 27, 2020 9 minute read

Unless you’ve been living under a rock for the last year or so, you’ve undoubtedly heard of 5G. While 5G is broadly recognized, a surprising number of people — business decision makers included — are unaware of what 5G is, how it works or the business outcomes it can deliver. 

For communications service providers, 5G networks represent a once-in-a-generation opportunity to parlay the technology that will drive innovation for the next 10 to 20 years into sustainable balance sheets and business models. A decade from now, the term 5G may be as ubiquitous as the word internet — and think of the technological revolution the internet helped spur by providing a platform for the biggest and most lucrative companies in today’s economy to live on.

For now, 5G is nearing the peak of Gartner’s hype cycle — a period of time typically associated with inflated expectations that is followed by the trough of disillusionment, when implementations fail to live up to such expectations.

This makes it critically important — for service providers and enterprises alike — to understand the definition and scope of 5G, the role it will play in the future economy, the challenges in deploying such technology and how to best leverage it.

What is 5G? 

5G is the fifth generation of mobile communications, evolving from 4G-LTE.  5G will enable new solutions that have a significant impact on nearly every aspect of society — how we live, work, play and experience the world. 

5G will focus on: 

  • Enhanced Broadband: Data-driven use cases requiring high data rates across a wide coverage area.
  • Mission-critical Services: New services in transportation, healthcare, industrial.
  • Massive IoT Connectivity: Millions of always-on, uninterrupted connections.

Early deployments for 5G — the ones you’re hearing about on TV commercials from various network operators — are focused on enhancing mobile broadband for consumers and are more often than not leveraging existing 4G infrastructure to do so. 

True 5G networks will support the remaining two areas (mission-critical services and massive IoT) and then some, but will not be deployed widely until late 2020 or 2021 at the earliest.

5G is not a single technology, but a set of technology areas — each with their own subsets of technologies — that all must work together to provide the high bandwidth and low latency connectivity that has become the hallmark of 5G. Key technologies areas: 

  • Connected devices
  • Radio network
  • Transport network
  • Edge computing and edge data center
  • Automation and orchestration

How is 5G different from 4G? 

Unlike previous generations in which 2G was supplanted by 3G, only to be ripped and replaced by 4G, 5G is not replacing anything — at least, not initially. In fact, 4G LTE and 5G will coexist and complement each other for some time as service providers continue to invest in both.

Generally, 5G will follow two deployment models — non-standalone (NSA) and standalone (SA): 

It’s not an either-or proposition. Operators must leverage existing 4G infrastructure to deliver 5G, while at the same time investing in the technology needed to work toward adopting 5G SA.

For the sake of comparison, however, here is how 5G will stack up with 4G:

  • 5G, which uses high-frequency spectrum, will be faster and have higher capacity to carry more traffic/data, particularly video. We’re talking speeds up to 20Gb/s.
  • 5G will have lower latency by moving virtualized network functions closer to the edge of the network to reduce distance of signals and lowers chance of signal loss or fallout. Latency can reach as low as 4 milliseconds.
  • 5G will have capacity for larger number of connected devices, less interference and better efficiency. Think connected autonomous cars, smart refrigerators, high-performing machine learning, etc.
  • Lower energy consumption, which will enable high-speed data to battery-powered devices such as a virtual reality headset.

What about other wireless technologies? 

Getting far less attention is 5G’s lesser-known cousin, Wi-Fi 6, which also promises to fundamentally improve on previous generations of Wi-Fi and what organizations can do with it.

Understanding the difference between 5G and other wireless technologies, such as Wi-Fi, Wi-Fi 6 or other licensed spectrums, such as Distributed Antenna Systems (DAS), is important, too. 

Two WWT networking experts — Neil Anderson and Jennifer Huber — have put together two good resource guides on understanding the nuances among these technologies. 

How are 5G networks built?

A typical 5G network architecture
Typical 5G network architecture.

To achieve high data speeds and low latency — and to leverage them at scale — 5G networks will lean heavily on disaggregated, virtualized solutions across the entire network domain from edge to core.

Disaggregating software from hardware allows service providers to leverage the power of software to become nimbler and offer solutions tailored to industry verticals. Virtualized solutions feature vendors with vastly different architectures that need to be able to seamlessly communicate with one another. Startups with their own value-added solutions need to scale.

To get the network performance needed to support 5G, operators will need to invest in infrastructure such as spectrum, RAN (radio access networks) infrastructure, transmission and core networks. They then must leverage disaggregated, multi-vendor solutions to virtualize nearly every aspect of the network to deploy those solutions at scale and truly maximize ROI of 5G infrastructure.

Key use cases of 5G 

  • Smart cities with swarms of drones cooperating to carry out search and rescue missions, fire assessments and traffic monitoring, all communicating wirelessly with each other and ground base stations.
  • Autonomous vehicles being able to communicate with each other, reading live map and traffic data, while safely interpreting their surrounding environment.
  • Smart factories filled with sensors, each monitoring different aspects of the working environment, using information ranging from location to accelerometer data, understanding where and how they interact with people and other machines.
  • Connected military bases with the potential to both enhance operations and drive new levels of combat readiness, by utilizing improved supply chain visibility, asset management and mobile analytics.
  • Better telemedicine that will allow patients to easily connect virtually with doctors, communicating via video chat or real-time imaging using remote, wireless monitoring devices instead of trekking to a doctor’s office or manually networking devices from their home.
  • Change the economics with fixed wireless access by quickly connecting businesses and homes to the internet in a faster, secure, more reliable fashion. Broadband access in rural areas and underdeveloped countries will enable economies and new businesses to blossom.

Is 5G Safer Than 4G? 

The broad scope and reach of 5G, while exciting, comes with increased exposure to a wider spectrum of security threats. As service providers rely on a more disaggregated and virtualized network architecture to enable speed, the number of access points susceptible to attack will grow exponentially.

In fact, analyst firm Ovum forecasts more than 1.3 billion 5G connections by 2023.

Think of it like a house. Your existing 4G home has the typical entryways: a front door, back door and side door. In upgrading to a 5G model, construction crews have come in to build a delightful new interior but have also added six new exterior doors to improve access and flow.

Is the existing security program you had in place for your 4G home an adequate solution to secure your shiny new 5G model equipped with three times as many doors? The answer is no, of course not.

For more on security and 5G, WWT Solutions Architect Abdel Filali El Garch provides an in depth explanation

How can service providers monetize all this 5G investment? 

No doubt, 5G will require massive capital expenditures. To justify these investments, operators will need to deliver differentiated services to end customers in order to monetize the infrastructure. 

Mobile edge computing (MEC), identified previously as a pillar of the five key 5G technology areas, will usher in a wave of next-gen applications that will utilize the low latency and higher bandwidth promised by 5G, creating new revenue streams for services providers.

Edge computing provides computing power as close to the device producing data as possible to increase speed and lower latency. 

Service providers need to effectively use their networks to be able to tap into the value being created at the edge. They can do this by:

What is the best way to piece this all together?

To succeed with 5G, network operators must change the way they architect networks to quickly innovate, and bring to market new services that create great customer experiences and generate new revenue streams. 

5G will force service providers from vertically integrated platforms to virtualized, multi-vendor disaggregated ones. 

Of course, none of this is easy. A 5G network doesn’t just magically rollout and the 5G market is fragmented, thus elevating the value of strategic partnerships — for everything from solution development and integration to knowing when and where to strike. 

WWT’s deep industry relationships with OEMs and extensive lab capabilities in our Advanced Technology Center (ATC) enables service providers to easily consume the underlying infrastructure required to deploy new 5G-enabled services that allow that allow them to be more agile in creating those services.

Further, operators can leverage our strong understanding of what enterprises want to deliver from an outcome standpoint and tie together those commercial use cases and build them through the service provider. 

Ready to harness the power of 5G? Let's Talk

 

Share this

Comments